Le but de cette Note est de présenter des classes remarquables d'algèbres Lie-admissibles qui contiennent entre autres les algèbres associatives, de Vinberg et pré-Lie et de déterminer leurs opérades associées et les opérades duales.
The aim of this paper is to present remarkable classes of Lie-admissible algebras containing in particular the associative algebras, the Vinberg and pre-Lie algebras. We determine the associated operads and their dual operads.
Révisé le :
Publié le :
Elisabeth Remm 1
@article{CRMATH_2002__334_12_1047_0, author = {Elisabeth Remm}, title = {Op\'erades {Lie-admissibles}}, journal = {Comptes Rendus. Math\'ematique}, pages = {1047--1050}, publisher = {Elsevier}, volume = {334}, number = {12}, year = {2002}, doi = {10.1016/S1631-073X(02)02408-1}, language = {fr}, }
Elisabeth Remm. Opérades Lie-admissibles. Comptes Rendus. Mathématique, Volume 334 (2002) no. 12, pp. 1047-1050. doi : 10.1016/S1631-073X(02)02408-1. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02408-1/
[1] On the power-associative rings, Trans. Amer. Math. Soc., Volume 64 (1948), pp. 552-593
[2] Algèbres pré-Lie et algèbres de Hopf liées à la renormalisation, C. R. Acad. Sci. Paris, Série I, Volume 332 (2001), pp. 681-684
[3] Pre-Lie algebra and the rooted trees operad, Internat. Math. Res. Notices, Volume 8 (2001), pp. 395-408
[4] Koszul duality for operads, Duke Math. J., Volume 76 (1994) no. 1, pp. 203-272
[5] The cohomology structure of an associative ring, Ann. of Math. (2), Volume 78 (1963), pp. 267-288
[6] , Foundations of Differential Geometry, I, Wiley, New York, 1963
[7] La renaissance des opérades, Séminaire Bourbaki 1994/95, Astérisque, Volume 237 (1996), pp. 47-74
[8] Une version non commutative des algèbres de Lie : les algèbres de Leibniz, Enseign. Math., Volume 39 (1993), pp. 269-293
[9] Geometry of Iterated Loop Spaces, Lecture Notes in Math., 271, Springer-Verlag, 1972
[10] Sur une classe de propriétés communes a quelques types différents d'algèbres, Enseign. Math. (2), Volume 14 (1968), pp. 225-277
[11] E. Remm, Structures affines sur les algèbres de Lie et opérades Lie-admissibles, Thèse, Mulhouse, 2001
- , 2023 17th International Conference on Electronics Computer and Computation (ICECCO) (2023), p. 1 | DOI:10.1109/icecco58239.2023.10147149
- Complex, Symplectic, and Contact Structures on Low-Dimensional Lie Groups, Journal of Mathematical Sciences, Volume 207 (2015) no. 4, p. 551 | DOI:10.1007/s10958-015-2385-6
- Poisson structures on C[X1, …,Xn] associated with rigid Lie algebras, Journal of Generalized Lie Theory and Applications, Volume 4 (2010), p. 63 | DOI:10.4303/jglta/g090501
- A class of nonassociative algebras, Algebra Colloquium, Volume 14 (2007) no. 2, pp. 313-326 | DOI:10.1142/s1005386707000314 | Zbl:1230.17001
- Algebras with one operation including Poisson and other Lie-admissible algebras, Journal of Algebra, Volume 299 (2006) no. 1, pp. 171-189 | DOI:10.1016/j.jalgebra.2005.09.018 | Zbl:1101.18004
- Lie-admissible algebras and operads., Journal of Algebra, Volume 273 (2004) no. 1, pp. 129-152 | DOI:10.1016/j.jalgebra.2003.10.015 | Zbl:1045.17007
- Valued deformations of algebras, Journal of Algebra and its Applications, Volume 3 (2004) no. 4, pp. 345-365 | DOI:10.1142/s0219498804000915 | Zbl:1062.17010
- A topological property of the set of characteristically nilpotent Lie algebras., Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 337 (2003) no. 12, pp. 757-759 | DOI:10.1016/j.crma.2003.10.032 | Zbl:1029.17009
- Affine structures on abelian Lie groups, Linear Algebra and its Applications, Volume 360 (2003), p. 215 | DOI:10.1016/s0024-3795(02)00452-4
Cité par 9 documents. Sources : Crossref, zbMATH
Commentaires - Politique