Le but de cette Note est de signaler l'existence d'une transition entre les régime classique et quantiques pour les estimées de Lifshitz, transition dont le paramètre est le comportement extrémal des variables aléatoires.
In this short Note, we show a transition between the classical and the quantum regime for Lifshitz tails. The parameter governing this transition is the decay of the distribution function of the random variables at the edges of its support.
Accepté le :
Publié le :
Frédéric Klopp 1
@article{CRMATH_2002__335_1_87_0, author = {Fr\'ed\'eric Klopp}, title = {Une remarque \`a propos des asymptotiques de {Lifshitz} internes}, journal = {Comptes Rendus. Math\'ematique}, pages = {87--92}, publisher = {Elsevier}, volume = {335}, number = {1}, year = {2002}, doi = {10.1016/S1631-073X(02)02415-9}, language = {fr}, }
Frédéric Klopp. Une remarque à propos des asymptotiques de Lifshitz internes. Comptes Rendus. Mathématique, Volume 335 (2002) no. 1, pp. 87-92. doi : 10.1016/S1631-073X(02)02415-9. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02415-9/
[1] Large Deviation Techniques and Applications, Jones and Bartlett, Boston, 1992
[2] Large Deviations, Pure Appl. Math., 137, Academic Press, 1989
[3] Random Schrödinger operators (A. Jensen; H. Holden, eds.), Schrödinger Operators, Proceedings, Sonderborg, Denmark, 1988, Lecture Notes in Phys., 345, Springer-Verlag, Berlin, 1989
[4] Comparison theorems for the gap of Schrödinger operators, J. Funct. Anal., Volume 75 (1987) no. 2, pp. 396-410
[5] Internal Lifshits tails for random perturbations of periodic Schrödinger operators, Duke Math. J., Volume 98 (1999) no. 2, pp. 335-396
[6] Precise high energy asymptotics for the integrated density of states of an unbounded random Jacobi matrix, Rev. Math. Phys., Volume 12 (2000) no. 4, pp. 575-620
[7] F. Klopp, Internal Lifshitz tails for Schrödinger operators with random potentials, J. Math. Phys., 2002, à paraı̂tre
[8] Comportement semi-classique pour l'opérateur de Schrödinger à potentiel périodique, J. Funct. Anal., Volume 72 (1987), pp. 65-93
[9] Spectra of Random and Almost-Periodic Operators, Springer-Verlag, Berlin, 1992
[10] Methods of Modern Mathematical Physics, Vol IV: Analysis of Operators, Academic Press, New York, 1978
[11] O. Saad, Comportement en grandes énergies de la densité d'états du modèle d'Anderson non borné, Ph.D. thesis, Université de Paris 13, Villetaneuse, en préparation
[12] Semi-classical analysis of low lying eigenvalues III. Width of the ground state band in strongly coupled solids, Ann. Phys., Volume 158 (1984), pp. 415-420
[13] Lifshitz tails for the Anderson model, J. Statist. Phys., Volume 38 (1985), pp. 65-76
[14] Caught by Disorder, Birkhäuser, 2001
Cité par Sources :
Commentaires - Politique