[Sur les solutions un-homogènes des systèmes elliptiques en dimension deux]
Dans cette Note, nous considérons une classe de systèmes d'équations elliptiques non linéaires du second ordre sous forme divergence à deux variables indépendantes. Nous prouvons que toutes les solutions faibles un-homogènes et Lipschitz continues sont linéaires.
In this Note we consider a class of nonlinear second order elliptic systems in divergence form and two independent variables. We prove that all Lipschitz continuous one-homogeneous weak solutions are linear.
Accepté le :
Publié le :
Daniel Phillips 1
@article{CRMATH_2002__335_1_39_0, author = {Daniel Phillips}, title = {On one-homogeneous solutions to elliptic systems in two dimensions}, journal = {Comptes Rendus. Math\'ematique}, pages = {39--42}, publisher = {Elsevier}, volume = {335}, number = {1}, year = {2002}, doi = {10.1016/S1631-073X(02)02418-4}, language = {en}, }
Daniel Phillips. On one-homogeneous solutions to elliptic systems in two dimensions. Comptes Rendus. Mathématique, Volume 335 (2002) no. 1, pp. 39-42. doi : 10.1016/S1631-073X(02)02418-4. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02418-4/
[1] An example of an irregular solution to a nonlinear Euler–Lagrange elliptic system with real analytic coefficients, Ann. Scuola Norm. Sup. Pisa., Volume 23 (1996) no. 1, pp. 57-67
[2] Existence and differentiability theorems for the solutions of variational problems for multiple integrals, Bull. Amer. Math. Soc., Volume 46 (1940), pp. 439-458
[3] Example of an irregular solution to a nonlinear elliptic system with analytic coefficients and conditions of regularity, Theory of Nonlinear Operators, Abh. Akad. der Wissen. der DDR, 1977
[4] A singular minimizer to a strongly convex functional in three dimensions, Calc. Var. Partial Differential Equations, Volume 10 (2000) no. 3, pp. 213-221
Cité par Sources :
Commentaires - Politique