Comptes Rendus
On one-homogeneous solutions to elliptic systems in two dimensions
Comptes Rendus. Mathématique, Volume 335 (2002) no. 1, pp. 39-42.

In this Note we consider a class of nonlinear second order elliptic systems in divergence form and two independent variables. We prove that all Lipschitz continuous one-homogeneous weak solutions are linear.

Dans cette Note, nous considérons une classe de systèmes d'équations elliptiques non linéaires du second ordre sous forme divergence à deux variables indépendantes. Nous prouvons que toutes les solutions faibles un-homogènes et Lipschitz continues sont linéaires.

Received:
Accepted:
Published online:
DOI: 10.1016/S1631-073X(02)02418-4

Daniel Phillips 1

1 Department of Mathematics, Purdue University, West Lafayette, IN 47907, USA
@article{CRMATH_2002__335_1_39_0,
     author = {Daniel Phillips},
     title = {On one-homogeneous solutions to elliptic systems in two dimensions},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {39--42},
     publisher = {Elsevier},
     volume = {335},
     number = {1},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02418-4},
     language = {en},
}
TY  - JOUR
AU  - Daniel Phillips
TI  - On one-homogeneous solutions to elliptic systems in two dimensions
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 39
EP  - 42
VL  - 335
IS  - 1
PB  - Elsevier
DO  - 10.1016/S1631-073X(02)02418-4
LA  - en
ID  - CRMATH_2002__335_1_39_0
ER  - 
%0 Journal Article
%A Daniel Phillips
%T On one-homogeneous solutions to elliptic systems in two dimensions
%J Comptes Rendus. Mathématique
%D 2002
%P 39-42
%V 335
%N 1
%I Elsevier
%R 10.1016/S1631-073X(02)02418-4
%G en
%F CRMATH_2002__335_1_39_0
Daniel Phillips. On one-homogeneous solutions to elliptic systems in two dimensions. Comptes Rendus. Mathématique, Volume 335 (2002) no. 1, pp. 39-42. doi : 10.1016/S1631-073X(02)02418-4. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02418-4/

[1] W. Hao; S. Leonardi; J. Nečas An example of an irregular solution to a nonlinear Euler–Lagrange elliptic system with real analytic coefficients, Ann. Scuola Norm. Sup. Pisa., Volume 23 (1996) no. 1, pp. 57-67

[2] C.B. Morrey Existence and differentiability theorems for the solutions of variational problems for multiple integrals, Bull. Amer. Math. Soc., Volume 46 (1940), pp. 439-458

[3] J. Nečas Example of an irregular solution to a nonlinear elliptic system with analytic coefficients and conditions of regularity, Theory of Nonlinear Operators, Abh. Akad. der Wissen. der DDR, 1977

[4] V. Šverák; X. Yan A singular minimizer to a strongly convex functional in three dimensions, Calc. Var. Partial Differential Equations, Volume 10 (2000) no. 3, pp. 213-221

Cited by Sources:

Comments - Policy