Comptes Rendus
Global Carleman estimates for weak solutions of elliptic nonhomogeneous Dirichlet problems
[Estimations de Carleman globales pour des solutions faibles de problèmes elliptiques avec condition de Dirichlet non homogène]
Comptes Rendus. Mathématique, Volume 335 (2002) no. 1, pp. 33-38.

On considère une équation elliptique du second ordre générale avec second membre f+j=0NfjxjH-1(Ω), f,fjL2(Ω) et condition de Dirichlet g∈H1/2(Γ). On montre une estimation de Carleman globale pour la solution y de cette équation en termes de normes L2 à poids de f et fj et de la norme H1/2 de g. Cette estimation dépend de deux paramètres réels s et λ qui sont supposés assez grands et est optimale en ce qui concerne les exposants de ces paramètres. Ceci nous permet d'obtenir, par exemple, des estimations fines sur la pression dans les équations de Navier–Stokes linéarisées et se révèle fort utile dans l'étude des problèmes de contrôlabilité.

We consider a general second order elliptic equation with right-hand side f+j=0NfjxjH-1(Ω) where f,fjL2(Ω) and Dirichlet boundary condition g∈H1/2(Γ). We prove a global Carleman estimate for the solution y of this equation in terms of the weighted L2 norms of f and fj and the H1/2 norm of g. This estimate depends on two real parameters s and λ which are supposed to be large enough and is sharp with respect to the exponents of these parameters. This allows us to obtain, for example, sharper estimates on the pressure term in the linearized Navier–Stokes equations and it turns out to be very useful in the context of controllability problems.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(02)02389-0

Oleg Yu. Imanuvilov 1 ; Jean-Pierre Puel 2

1 Department of Mathematics, Iowa State University, 400 Carver Hall, Ames, IA 50011-2064, USA
2 Laboratoire de mathématiques appliquées, Université de Versailles St Quentin, 45, avenue des États Unis, 78035 Versailles cedex, France
@article{CRMATH_2002__335_1_33_0,
     author = {Oleg Yu. Imanuvilov and Jean-Pierre Puel},
     title = {Global {Carleman} estimates for weak solutions of elliptic nonhomogeneous {Dirichlet} problems},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {33--38},
     publisher = {Elsevier},
     volume = {335},
     number = {1},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02389-0},
     language = {en},
}
TY  - JOUR
AU  - Oleg Yu. Imanuvilov
AU  - Jean-Pierre Puel
TI  - Global Carleman estimates for weak solutions of elliptic nonhomogeneous Dirichlet problems
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 33
EP  - 38
VL  - 335
IS  - 1
PB  - Elsevier
DO  - 10.1016/S1631-073X(02)02389-0
LA  - en
ID  - CRMATH_2002__335_1_33_0
ER  - 
%0 Journal Article
%A Oleg Yu. Imanuvilov
%A Jean-Pierre Puel
%T Global Carleman estimates for weak solutions of elliptic nonhomogeneous Dirichlet problems
%J Comptes Rendus. Mathématique
%D 2002
%P 33-38
%V 335
%N 1
%I Elsevier
%R 10.1016/S1631-073X(02)02389-0
%G en
%F CRMATH_2002__335_1_33_0
Oleg Yu. Imanuvilov; Jean-Pierre Puel. Global Carleman estimates for weak solutions of elliptic nonhomogeneous Dirichlet problems. Comptes Rendus. Mathématique, Volume 335 (2002) no. 1, pp. 33-38. doi : 10.1016/S1631-073X(02)02389-0. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02389-0/

[1] C. Fabre; G. Lebeau Prolongement unique des solutions de l'équation de Stokes, Comm. Partial Differential Equations, Volume 21 (1996), pp. 573-596

[2] A. Fursikov; O. Imanuvilov Controllability of Evolution Equations, Lecture Notes Series, 34, Seoul National University, 1996

[3] L. Hörmander Linear Partial Differential Operators, Academic Press–Springer-Verlag, New York, Berlin, 1963

[4] O. Imanuvilov On exact controllability for the Navier–Stokes equations, ESAIM: Control Optim. Calc. Var., Volume 3 (1998), pp. 97-131 www.emath.fr/cocv/

[5] O. Imanuvilov Remarks on exact controllability for Navier–Stokes equations, ESAIM: Control Optim. Calc. Var., Volume 6 (2001), pp. 39-72 www.emath.fr/cocv/

[6] O. Imanuvilov, J.-P. Puel, Global Carleman estimates for weak elliptic nonhomogeneous Dirichlet problem, to appear

[7] O. Imanuvilov, M. Yamamoto, Carleman inequalities for parabolic equations in Sobolev spaces of negative order and exact controllability for semilinear parabolic equations, UTMS 98-46

[8] J.-L. Lions Optimal Control of Systems Governed by Partial Differential Equations, Springer-Verlag, Berlin, 1971

[9] M. Taylor Pseudodifferential Operators and Nonlinear PDE, Birkhäuser, Berlin, 1991

  • Van Thang Nguyen; Van Duc Nguyen Stability estimate for a time-dependent coefficient identification problem in parabolic equations, Journal of Mathematical Analysis and Applications, Volume 544 (2025) no. 1, p. 20 (Id/No 129054) | DOI:10.1016/j.jmaa.2024.129054 | Zbl:7968304
  • Irena Lasiecka; Buddhika Priyasad; Roberto Triggiani Uniform stabilization in Besov spaces with arbitrary decay rates of the magnetohydrodynamic system by finite-dimensional interior localized static feedback controllers, Research in the Mathematical Sciences, Volume 12 (2025) no. 1, p. 61 (Id/No 7) | DOI:10.1007/s40687-024-00490-7 | Zbl:7965251
  • Hualei Zhang Longtime behavior of the weakly coupled Euler-Bernoulli plate system with structural damping, Journal of Mathematical Analysis and Applications, Volume 532 (2024) no. 2, p. 22 (Id/No 127913) | DOI:10.1016/j.jmaa.2023.127913 | Zbl:1531.35078
  • Hua-Lei Zhang Energy decay for a coupled wave system with one local Kelvin-Voigt damping, Mathematische Nachrichten, Volume 297 (2024) no. 4, pp. 1310-1327 | DOI:10.1002/mana.202300112 | Zbl:1537.35089
  • Sylvain Ervedoza; Kévin Le Balc'h Cost of observability inequalities for elliptic equations in 2-d with potentials and applications to control theory, Communications in Partial Differential Equations, Volume 48 (2023) no. 4, pp. 623-677 | DOI:10.1080/03605302.2023.2190526 | Zbl:1519.35067
  • F. W. Chaves-Silva; E. Fernández-Cara; K. Le Balc'h; J. L. F. Machado; D. A. Souza Global controllability of the Boussinesq system with Navier-slip-with-friction and Robin boundary conditions, SIAM Journal on Control and Optimization, Volume 61 (2023) no. 2, pp. 484-510 | DOI:10.1137/21m1425566 | Zbl:1537.35283
  • Wensheng Zhang; Zhongliu Zhao Convergence analysis of a coefficient inverse problem for the semi-discrete damped wave equation, Applicable Analysis, Volume 101 (2022) no. 4, pp. 1430-1455 | DOI:10.1080/00036811.2020.1781826 | Zbl:1487.35454
  • Mythily Ramaswamy; Jean-Pierre Raymond; Arnab Roy Boundary feedback stabilization of the Boussinesq system with mixed boundary conditions, Journal of Differential Equations, Volume 266 (2019) no. 7, pp. 4268-4304 | DOI:10.1016/j.jde.2018.09.038 | Zbl:1405.93184
  • F. D. Araruna; B. M. R. Calsavara; E. Fernández-Cara Local exact controllability of two-phase field solidification systems with few controls, Applied Mathematics and Optimization, Volume 78 (2018) no. 2, pp. 267-296 | DOI:10.1007/s00245-017-9406-4 | Zbl:1403.82008
  • Patricio Guzmán Meléndez Lipschitz stability in an inverse problem for the main coefficient of a Kuramoto-Sivashinsky type equation, Journal of Mathematical Analysis and Applications, Volume 408 (2013) no. 1, pp. 275-290 | DOI:10.1016/j.jmaa.2013.05.050 | Zbl:1306.35054
  • Enrique Fernández-Cara; Diego A. Souza On the control of some coupled systems of the Boussinesq kind with few controls, Mathematical Control and Related Fields, Volume 2 (2012) no. 2, p. 121 | DOI:10.3934/mcrf.2012.2.121
  • Cătălin-George Lefter Feedback Stabilization of Magnetohydrodynamic Equations, SIAM Journal on Control and Optimization, Volume 49 (2011) no. 3, p. 963 | DOI:10.1137/070697124
  • Cătălin-George Lefter On a unique continuation property related to the boundary stabilization of magnetohydrodynamic equations, Analele Stiintifice ale Universitătii Al. I. Cuza din Iasi. Serie Nouă. Matematică, Volume 56 (2010) no. 1, pp. 1-15 | DOI:10.2478/v10157-010-0001-0 | Zbl:1212.93256
  • Cătălin Lefter Feedback stabilization of 2D Navier-Stokes equations with Navier slip boundary conditions, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 70 (2009) no. 1, pp. 553-562 | DOI:10.1016/j.na.2007.12.026 | Zbl:1152.35315
  • Enrique Zuazua Controllability and Observability of Partial Differential Equations: Some Results and Open Problems, Volume 3 (2007), p. 527 | DOI:10.1016/s1874-5717(07)80010-7

Cité par 15 documents. Sources : Crossref, zbMATH

Commentaires - Politique