[Estimations de Carleman globales pour des solutions faibles de problèmes elliptiques avec condition de Dirichlet non homogène]
We consider a general second order elliptic equation with right-hand side
On considère une équation elliptique du second ordre générale avec second membre
Accepté le :
Publié le :
Oleg Yu. Imanuvilov 1 ; Jean-Pierre Puel 2
@article{CRMATH_2002__335_1_33_0, author = {Oleg Yu. Imanuvilov and Jean-Pierre Puel}, title = {Global {Carleman} estimates for weak solutions of elliptic nonhomogeneous {Dirichlet} problems}, journal = {Comptes Rendus. Math\'ematique}, pages = {33--38}, publisher = {Elsevier}, volume = {335}, number = {1}, year = {2002}, doi = {10.1016/S1631-073X(02)02389-0}, language = {en}, }
TY - JOUR AU - Oleg Yu. Imanuvilov AU - Jean-Pierre Puel TI - Global Carleman estimates for weak solutions of elliptic nonhomogeneous Dirichlet problems JO - Comptes Rendus. Mathématique PY - 2002 SP - 33 EP - 38 VL - 335 IS - 1 PB - Elsevier DO - 10.1016/S1631-073X(02)02389-0 LA - en ID - CRMATH_2002__335_1_33_0 ER -
Oleg Yu. Imanuvilov; Jean-Pierre Puel. Global Carleman estimates for weak solutions of elliptic nonhomogeneous Dirichlet problems. Comptes Rendus. Mathématique, Volume 335 (2002) no. 1, pp. 33-38. doi : 10.1016/S1631-073X(02)02389-0. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02389-0/
[1] Prolongement unique des solutions de l'équation de Stokes, Comm. Partial Differential Equations, Volume 21 (1996), pp. 573-596
[2] Controllability of Evolution Equations, Lecture Notes Series, 34, Seoul National University, 1996
[3] Linear Partial Differential Operators, Academic Press–Springer-Verlag, New York, Berlin, 1963
[4] On exact controllability for the Navier–Stokes equations, ESAIM: Control Optim. Calc. Var., Volume 3 (1998), pp. 97-131 www.emath.fr/cocv/
[5] Remarks on exact controllability for Navier–Stokes equations, ESAIM: Control Optim. Calc. Var., Volume 6 (2001), pp. 39-72 www.emath.fr/cocv/
[6] O. Imanuvilov, J.-P. Puel, Global Carleman estimates for weak elliptic nonhomogeneous Dirichlet problem, to appear
[7] O. Imanuvilov, M. Yamamoto, Carleman inequalities for parabolic equations in Sobolev spaces of negative order and exact controllability for semilinear parabolic equations, UTMS 98-46
[8] Optimal Control of Systems Governed by Partial Differential Equations, Springer-Verlag, Berlin, 1971
[9] Pseudodifferential Operators and Nonlinear PDE, Birkhäuser, Berlin, 1991
Cité par Sources :
Commentaires - Politique