[Qu'est-ce qu'une solution des équations de Navier–Stokes ?]
The definition of a solution to the Navier–Stokes equations varies according to authors, but the link between those different definitions is not always explicit. In this Note, we intend to prove that six of the most common definitions are equivalent under a physically reasonable assumption. We then indicate a few consequences of this result.
La définition d'une solution des équations de Navier–Stokes varie avec les auteurs mais le lien entre ces différentes définitions n'est pas toujours explicite. Dans cette Note, on se propose de montrer que six des définitions les plus courantes sont équivalentes sous une hypothèse physiquement raisonnable. On indique ensuite quelques conséquences de ce résultat.
Publié le :
Sandrine Dubois 1
@article{CRMATH_2002__335_1_27_0, author = {Sandrine Dubois}, title = {What is a solution to the {Navier{\textendash}Stokes} equations?}, journal = {Comptes Rendus. Math\'ematique}, pages = {27--32}, publisher = {Elsevier}, volume = {335}, number = {1}, year = {2002}, doi = {10.1016/S1631-073X(02)02419-6}, language = {en}, }
Sandrine Dubois. What is a solution to the Navier–Stokes equations?. Comptes Rendus. Mathématique, Volume 335 (2002) no. 1, pp. 27-32. doi : 10.1016/S1631-073X(02)02419-6. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02419-6/
[1] On the strong solvability of the Navier–Stokes equations, J. Math. Fluid Mech., Volume 2 (2000), pp. 16-98
[2] P. Auscher, P. Tchamitchian, Espaces critiques pour le système des équations de Navier–Stokes incompressibles, Preprint, 1999
[3] S. Dubois, Mild solutions to the Navier–Stokes equations and energy equalities, Adv. Differential Equations, to appear
[4] S. Dubois, Uniqueness for some Leray–Hopf solutions to the Navier–Stokes equations, J. Differential Equations, to appear
[5] On the nonstationnary Navier–Stokes system, Rend. Sem. Math. Univ. Padova, Volume 32 (1962), pp. 243-260
[6] Unicité dans
[7] Une remarque sur l'unicité des solutions des équations de Navier–Stokes en dimension n, Bull. Soc. Math. France, Volume 89 (1961), pp. 1-8
[8] On global infinite energy solutions to the Navier–Stokes equations in two dimensions, Arch. Rational Mech. Anal., Volume 161 (2002), pp. 307-337
[9] Well-posedness for the Navier–Stokes equations, Adv. Math., Volume 157 (2001), pp. 22-35
[10] Bilinear estimates in BMO and the Navier–Stokes equations, Math. Zeit., Volume 235 (2000), pp. 173-194
[11] Semilinear heat equations and the Navier–Stokes equation with distributions in new function spaces as initial data, Comm. Partial Differential Equations, Volume 19 (1994), pp. 959-1014
[12] Essai sur le mouvement d'un liquide visqueux emplissant l'espace, Acta Math., Volume 63 (1934), pp. 193-248
[13] Mathematical Topics in Fluid Mechanics, Vol 1, Incompressible Models, Oxford University Press, 1996
[14] Asymptotic behaviour of global solutions to the Navier–Stokes equations in
[15] The initial value problem for the Navier–Stokes equations (R.E. Langer, ed.), Nonlinear Problems, University of Wisconsin Press, Madison, 1963, pp. 69-98
- Characterisation of the pressure term in the incompressible Navier-Stokes equations on the whole space, Discrete and Continuous Dynamical Systems. Series S, Volume 14 (2021) no. 8, pp. 2917-2931 | DOI:10.3934/dcdss.2020408 | Zbl:1476.35171
- Global regularity of weak solutions to the generalized Leray equations and its applications, Transactions of the American Mathematical Society, Volume 374 (2021) no. 10, pp. 7449-7497 | DOI:10.1090/tran/8455 | Zbl:1479.35622
- Well/ill-posedness for the dissipative Navier-Stokes system in generalized Carleson measure spaces, Advances in Nonlinear Analysis, Volume 8 (2019), pp. 203-224 | DOI:10.1515/anona-2016-0042 | Zbl:1421.35256
- Large Time Behavior of the Navier-Stokes Flow, Handbook of Mathematical Analysis in Mechanics of Viscous Fluids (2018), p. 579 | DOI:10.1007/978-3-319-13344-7_11
- On the well-posedness of parabolic equations of Navier-Stokes type with
data, Journal of the Institute of Mathematics of Jussieu, Volume 16 (2017) no. 5, pp. 947-985 | DOI:10.1017/s1474748015000158 | Zbl:1375.35307 - On a non-solenoidal approximation to the incompressible Navier-Stokes equations, Journal of the London Mathematical Society, Volume 96 (2017) no. 2, p. 326 | DOI:10.1112/jlms.12063
- Large Time Behavior of the Navier–Stokes Flow, Handbook of Mathematical Analysis in Mechanics of Viscous Fluids (2016), p. 1 | DOI:10.1007/978-3-319-10151-4_11-1
- Bibliography, The Navier-Stokes Problem in the 21st Century (2016), p. 677 | DOI:10.1201/b19556-23
- Existence and regularity of weak solutions to the quasi-geostrophic equations in the spaces
or , Communications in Mathematical Physics, Volume 277 (2008) no. 1, pp. 45-67 | DOI:10.1007/s00220-007-0356-6 | Zbl:1134.35025 - Harmonic Analysis Tools for Solving the Incompressible Navier–Stokes Equations, Volume 3 (2005), p. 161 | DOI:10.1016/s1874-5792(05)80006-0
- On the stability of global solutions to Navier–Stokes equations in the space, Journal de Mathématiques Pures et Appliquées. Neuvième Série, Volume 83 (2004) no. 6, pp. 673-697 | DOI:10.1016/j.matpur.2004.01.003 | Zbl:1107.35096
Cité par 11 documents. Sources : Crossref, zbMATH
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier