On obtient des formules de caractères pour certaines représentations irréductibles du groupe
We obtain character formulas of some irreducible representations of
Révisé le :
Publié le :
Sébastien Foulle 1
@article{CRMATH_2002__335_1_11_0, author = {S\'ebastien Foulle}, title = {Formules de caract\`eres pour des repr\'esentations irr\'eductibles du groupe symplectique en caract\'eristique $ \mathbf{p}$}, journal = {Comptes Rendus. Math\'ematique}, pages = {11--16}, publisher = {Elsevier}, volume = {335}, number = {1}, year = {2002}, doi = {10.1016/S1631-073X(02)02421-4}, language = {fr}, }
TY - JOUR AU - Sébastien Foulle TI - Formules de caractères pour des représentations irréductibles du groupe symplectique en caractéristique $ \mathbf{p}$ JO - Comptes Rendus. Mathématique PY - 2002 SP - 11 EP - 16 VL - 335 IS - 1 PB - Elsevier DO - 10.1016/S1631-073X(02)02421-4 LA - fr ID - CRMATH_2002__335_1_11_0 ER -
Sébastien Foulle. Formules de caractères pour des représentations irréductibles du groupe symplectique en caractéristique $ \mathbf{p}$. Comptes Rendus. Mathématique, Volume 335 (2002) no. 1, pp. 11-16. doi : 10.1016/S1631-073X(02)02421-4. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02421-4/
[1] Tilting modules for classical groups and Howe duality in positive characteristic, Transform. Groups, Volume 1 (1996), pp. 1-34
[2] S. Foulle, Character formulas for classical groups in equal characteristic, en préparation
[3] Fusion rings for modular representations of Chevalley groups, Contemp. Math., Volume 175 (1994), pp. 89-100
[4] Construction of p−1 irreducibles modules with fundamental highest weight for the symplectic group in characteristic p, J. London Math. Soc., Volume 58 (1998) no. 2, pp. 619-632
[5] Perspectives on invariant theory: Schur duality, multiplicity-free actions and beyond, The Schur Lectures, Tel Aviv, 1992, Israel Math. Conf. Proc., 8, 1995, pp. 1-182
[6] Some problems in the representation theory of finite Chevalley groups, The Santa Cruz Conference on Finite Groups, 1979, Proc. Symp. Pure Math., 37, 1980, pp. 313-317
[7] A character formula for a family of simple modular representations of GLn, Comment. Math. Helv., Volume 74 (1999), pp. 280-296
[8] Tilting modules and their applications, Analysis on Homogeneous Spaces and Representation Theory of Lie Groups, Adv. Stud. Pure Math., 26, 2000, pp. 145-212
[9] Young tableaux, Gel'fand patterns, and branching rules for classical groups, J. Algebra, Volume 164 (1994), pp. 299-360
[10] Representations of dimension (pn±1)/2 of the symplectic group of degree 2n over a field of characteristic p, Vestnik Akad. Navuk. BSSR, Ser. Fiz.-Mat. Navuk, Volume 6 (1987), pp. 9-15
- An application of TQFT to modular representation theory, Inventiones Mathematicae, Volume 210 (2017) no. 2, pp. 501-530 | DOI:10.1007/s00222-017-0734-4 | Zbl:1423.20010
- Dimension formulas for some modular representations of the symplectic group in the natural characteristic., Journal of Pure and Applied Algebra, Volume 217 (2013) no. 1, pp. 82-86 | DOI:10.1016/j.jpaa.2012.04.005 | Zbl:1268.20047
- Character formulas of irreducible representations of the symplectic group in prime characteristic, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 335 (2002) no. 1, pp. 11-16 | DOI:10.1016/s1631-073x(02)02421-4 | Zbl:1036.20038
Cité par 3 documents. Sources : zbMATH
Commentaires - Politique