On donne un lemme de zéros applicable aux formes linéaires de logarithmes qui raffine au niveau des constantes l'énoncé 11.3 de [4].
We give a lemma of zeros, applicable to the linears forms of logarithms, that refine for the constants, the statement 11.3 of [4].
Accepté le :
Publié le :
Nicolas Gouillon 1
@article{CRMATH_2002__335_2_167_0, author = {Nicolas Gouillon}, title = {Un lemme de z\'eros}, journal = {Comptes Rendus. Math\'ematique}, pages = {167--170}, publisher = {Elsevier}, volume = {335}, number = {2}, year = {2002}, doi = {10.1016/S1631-073X(02)02422-6}, language = {fr}, }
Nicolas Gouillon. Un lemme de zéros. Comptes Rendus. Mathématique, Volume 335 (2002) no. 2, pp. 167-170. doi : 10.1016/S1631-073X(02)02422-6. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02422-6/
[1] On polynomials and exponential polynomial in several complex variables, Invent. Math., Volume 63 (1981) no. 1, pp. 91-95
[2] Lemmes de zéros dans les groupes algébriques commutatifs, Bull. Soc. Math. France, Volume 114 (1986) no. 3, pp. 355-383
[3] Diophantine Approximation on Linear Algebraic Groups, Springer-Verlag, 1999
- A kit for linear forms in three logarithms. With an appendix by Michel Laurent, Mathematics of Computation, Volume 93 (2024) no. 348, pp. 1903-1951 | DOI:10.1090/mcom/3908 | Zbl:1548.11067
- Modelling of frictionless Signorini problem for a linear elastic membrane shell, Applicable Analysis, Volume 101 (2022) no. 6, pp. 2295-2315 | DOI:10.1080/00036811.2020.1807008 | Zbl:1491.74077
- Explicit lower bounds for liner forms in two logarithms, Journal de Théorie des Nombres de Bordeaux, Volume 18 (2006) no. 1, pp. 125-146 | DOI:10.5802/jtnb.537 | Zbl:1119.11040
- Explicit lower bounds for linear forms of logarithms., Théorie des nombres. Colloque jeunes chercheurs, Besançon: Université de Franche-Comté, 2003, p. 7 | Zbl:1161.11367
Cité par 4 documents. Sources : zbMATH
Commentaires - Politique