We classify the holonomic systems of (micro) differential equations of multiplicity one along a singular Lagrangian irreducible variety contained in an involutive submanifold of maximal codimension. We show that their solutions are related to kFk−1 hypergeometric functions on the Riemann sphere.
On classifie les systèmes holonomes d'équations (micro) differentielles de multiplicité un dont le support est un espace analytique complexe Lagrangien, singulier, irréductible et contenu dans une sous-varieté lisse de codimension maximal. On montre que leur solutions sont en rapport avec des fonctions kFk−1 hypergeométriques sur la sphère de Riemann.
Published online:
Orlando Neto 1; Pedro C. Silva 1
@article{CRMATH_2002__335_2_171_0, author = {Orlando Neto and Pedro C. Silva}, title = {Holonomic systems with solutions ramified along a~cusp}, journal = {Comptes Rendus. Math\'ematique}, pages = {171--176}, publisher = {Elsevier}, volume = {335}, number = {2}, year = {2002}, doi = {10.1016/S1631-073X(02)02436-6}, language = {en}, }
Orlando Neto; Pedro C. Silva. Holonomic systems with solutions ramified along a cusp. Comptes Rendus. Mathématique, Volume 335 (2002) no. 2, pp. 171-176. doi : 10.1016/S1631-073X(02)02436-6. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02436-6/
[1] The monodromy of the hypergeometric function nFn−1, Invent. Math., Volume 95 (1989), pp. 325-354
[2] Analytic -modules and Applications, Kluwer Academic, 1993
[3] On holonomic systems of microdifferential equations III, Publ. Res. Inst. Math. Sci., Volume 17 (1981), pp. 813-979
[4] Hypergeometric functions, Indag. Math., Volume 23 (1961), pp. 361-403
[5] A microlocal Riemann–Hilbert correspondence, Comp. Math., Volume 127 (2001), pp. 229-241
[6] Microdifferential Systems in the Complex Domain, Springer-Verlag, 1985
[7] Micro-local analysis of prehomogeneous vector spaces, Invent. Math., Volume 62 (1980), pp. 117-178
Cited by Sources:
Comments - Policy