Comptes Rendus
Holonomic systems with solutions ramified along a cusp
Comptes Rendus. Mathématique, Volume 335 (2002) no. 2, pp. 171-176.

We classify the holonomic systems of (micro) differential equations of multiplicity one along a singular Lagrangian irreducible variety contained in an involutive submanifold of maximal codimension. We show that their solutions are related to kFk−1 hypergeometric functions on the Riemann sphere.

On classifie les systèmes holonomes d'équations (micro) differentielles de multiplicité un dont le support est un espace analytique complexe Lagrangien, singulier, irréductible et contenu dans une sous-varieté lisse de codimension maximal. On montre que leur solutions sont en rapport avec des fonctions kFk−1 hypergeométriques sur la sphère de Riemann.

Accepted:
Published online:
DOI: 10.1016/S1631-073X(02)02436-6

Orlando Neto 1; Pedro C. Silva 1

1 CMAF, Av. Prof. Gama Pinto 2, 1649-003 Lisboa, Portugal
@article{CRMATH_2002__335_2_171_0,
     author = {Orlando Neto and Pedro C. Silva},
     title = {Holonomic systems with solutions ramified along a~cusp},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {171--176},
     publisher = {Elsevier},
     volume = {335},
     number = {2},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02436-6},
     language = {en},
}
TY  - JOUR
AU  - Orlando Neto
AU  - Pedro C. Silva
TI  - Holonomic systems with solutions ramified along a cusp
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 171
EP  - 176
VL  - 335
IS  - 2
PB  - Elsevier
DO  - 10.1016/S1631-073X(02)02436-6
LA  - en
ID  - CRMATH_2002__335_2_171_0
ER  - 
%0 Journal Article
%A Orlando Neto
%A Pedro C. Silva
%T Holonomic systems with solutions ramified along a cusp
%J Comptes Rendus. Mathématique
%D 2002
%P 171-176
%V 335
%N 2
%I Elsevier
%R 10.1016/S1631-073X(02)02436-6
%G en
%F CRMATH_2002__335_2_171_0
Orlando Neto; Pedro C. Silva. Holonomic systems with solutions ramified along a cusp. Comptes Rendus. Mathématique, Volume 335 (2002) no. 2, pp. 171-176. doi : 10.1016/S1631-073X(02)02436-6. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02436-6/

[1] F. Beuckers; G. Heckman The monodromy of the hypergeometric function nFn−1, Invent. Math., Volume 95 (1989), pp. 325-354

[2] J.-E. Bjork Analytic 𝒟-modules and Applications, Kluwer Academic, 1993

[3] M. Kashiwara; T. Kawai On holonomic systems of microdifferential equations III, Publ. Res. Inst. Math. Sci., Volume 17 (1981), pp. 813-979

[4] A.H. Levelt Hypergeometric functions, Indag. Math., Volume 23 (1961), pp. 361-403

[5] O. Neto A microlocal Riemann–Hilbert correspondence, Comp. Math., Volume 127 (2001), pp. 229-241

[6] P. Schapira Microdifferential Systems in the Complex Domain, Springer-Verlag, 1985

[7] M. Sato; M. Kashiwara; T. Kimura; T. Oshima Micro-local analysis of prehomogeneous vector spaces, Invent. Math., Volume 62 (1980), pp. 117-178

Cited by Sources:

Comments - Policy