We prove that there exist Liouville numbers which are normal, as well as Liouville numbers which are non-normal to any base.
Nous montrons qu'il existe des nombres de Liouville normaux ainsi que des nombres de Liouville qui ne sont normaux dans aucune base.
Accepted:
Published online:
Yann Bugeaud 1
@article{CRMATH_2002__335_2_117_0, author = {Yann Bugeaud}, title = {Nombres de {Liouville} et nombres normaux}, journal = {Comptes Rendus. Math\'ematique}, pages = {117--120}, publisher = {Elsevier}, volume = {335}, number = {2}, year = {2002}, doi = {10.1016/S1631-073X(02)02456-1}, language = {fr}, }
Yann Bugeaud. Nombres de Liouville et nombres normaux. Comptes Rendus. Mathématique, Volume 335 (2002) no. 2, pp. 117-120. doi : 10.1016/S1631-073X(02)02456-1. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02456-1/
[1] On approximation with algebraic numbers of bounded degree, Mathematika, Volume 23 (1976), pp. 18-31
[2] On a theorem of Kaufman: Cantor-type construction of linear fractal Salem sets, Ark. Mat., Volume 36 (1998), pp. 307-316
[3] Liouville numbers, Rajchman measures, and small Cantor sets, Proc. Amer. Math. Soc., Volume 128 (2000), pp. 2637-2640
[4] Les probabilités dénombrables et leurs applications arithmétiques, Rend. Circ. Math. Palermo, Volume 27 (1909), pp. 247-271
[5] On Weyl's criterion for uniform distribution, Michigan Math. J., Volume 10 (1963), pp. 311-314
[6] Metric Number Theory, Clarendon Press, Oxford, 1998
[7] Continued fractions and Fourier transforms, Mathematika, Volume 27 (1980), pp. 262-267
[8] On the theorem of Jarnı́k and Besicovitch, Acta Arith., Volume 39 (1981), pp. 265-267
[9] Remarques relatives à des classes très étendues de quantités dont la valeur n'est ni algébrique, ni même réductible à des irrationnelles algébriques, C. R. Acad. Sci. Paris, Volume 18 (1844), pp. 883-885 (et 910–911)
[10] Ten Lectures on the Interface between Analytic Number Theory and Harmonic Analysis, American Mathematical Society, Providence, RI, 1994
[11] The Hausdorff dimension of a set of non-normal well approximable numbers, Number Theory, Carbondale, 1979, Lectures Notes in Math., 751, Springer-Verlag, Berlin, 1979, pp. 256-264
Cited by Sources:
Comments - Policy