Comptes Rendus
Les formes de torsion holomorphes du complexe de de Rham
Comptes Rendus. Mathématique, Volume 335 (2002) no. 3, pp. 243-247.

Dans cette Note, on annonce l'annulation des formes de torsion analytique holomorphes du complexe de de Rham relatif d'une fibration équivariante.

In this Note, we announce the vanishing of the holomorphic torsion forms of the relative de Rham complex of an equivariant fibration.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(02)02469-X

Jean-Michel Bismut 1

1 Département de mathématique, Université Paris-Sud, Bâtiment 425, 91405 Orsay, France
@article{CRMATH_2002__335_3_243_0,
     author = {Jean-Michel Bismut},
     title = {Les formes de torsion holomorphes du complexe de de {Rham}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {243--247},
     publisher = {Elsevier},
     volume = {335},
     number = {3},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02469-X},
     language = {fr},
}
TY  - JOUR
AU  - Jean-Michel Bismut
TI  - Les formes de torsion holomorphes du complexe de de Rham
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 243
EP  - 247
VL  - 335
IS  - 3
PB  - Elsevier
DO  - 10.1016/S1631-073X(02)02469-X
LA  - fr
ID  - CRMATH_2002__335_3_243_0
ER  - 
%0 Journal Article
%A Jean-Michel Bismut
%T Les formes de torsion holomorphes du complexe de de Rham
%J Comptes Rendus. Mathématique
%D 2002
%P 243-247
%V 335
%N 3
%I Elsevier
%R 10.1016/S1631-073X(02)02469-X
%G fr
%F CRMATH_2002__335_3_243_0
Jean-Michel Bismut. Les formes de torsion holomorphes du complexe de de Rham. Comptes Rendus. Mathématique, Volume 335 (2002) no. 3, pp. 243-247. doi : 10.1016/S1631-073X(02)02469-X. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02469-X/

[1] M.F. Atiyah; R. Bott A Lefschetz fixed point formula for elliptic complexes. I, Ann. of Math., Volume 86 (1967) no. 2, pp. 374-407

[2] M.F. Atiyah; R. Bott A Lefschetz fixed point formula for elliptic complexes. II. Applications, Ann. of Math., Volume 88 (1968) no. 2, pp. 451-491

[3] J.-M. Bismut The Atiyah–Singer index theorem for families of Dirac operators: two heat equation proofs, Invent. Math., Volume 83 (1986) no. 1, pp. 91-151

[4] J.-M. Bismut Holomorphic families of immersions and higher analytic torsion forms, Astérisque, Volume 244 (1997), p. viii+275

[5] J.-M. Bismut, Holomorphic and de Rham torsion, Preprint Université Paris-Sud, Orsay, 2002

[6] J.-M. Bismut; H. Gillet; C. Soulé Analytic torsion and holomorphic determinant bundles. II. Direct images and Bott–Chern forms, Comm. Math. Phys., Volume 115 (1988) no. 1, pp. 79-126

[7] J.-M. Bismut; K. Köhler Higher analytic torsion forms for direct images and anomaly formulas, J. Algebraic Geom., Volume 1 (1992) no. 4, pp. 647-684

[8] J.-M. Bismut; J. Lott Flat vector bundles, direct images and higher real analytic torsion, J. Amer. Math. Soc., Volume 8 (1995) no. 2, pp. 291-363

[9] J.-M. Bismut, X. Ma, Holomorphic immersions and equivariant torsion forms, Preprint Université Paris-Sud, Orsay, 2002

[10] H. Gillet; C. Soulé An arithmetic Riemann–Roch theorem, Invent. Math., Volume 110 (1992) no. 3, pp. 473-543

[11] X. Ma Submersions and equivariant Quillen metrics, Ann. Inst. Fourier (Grenoble), Volume 50 (2000) no. 5, pp. 1539-1588

[12] V. Maillot, D. Roessler, Conjectures sur les dérivées logarithmiques des fonctions L d'Artin aux entiers négatifs, Preprint, 2002

[13] D. Quillen Superconnections and the Chern character, Topology, Volume 24 (1985) no. 1, pp. 89-95

Cité par Sources :

Commentaires - Politique