Soit
Let
Publié le :
Jean-Michel Bismut 1
@article{CRMATH_2011__349_1-2_75_0, author = {Jean-Michel Bismut}, title = {Laplacien hypoelliptique et cohomologie de {Bott{\textendash}Chern}}, journal = {Comptes Rendus. Math\'ematique}, pages = {75--80}, publisher = {Elsevier}, volume = {349}, number = {1-2}, year = {2011}, doi = {10.1016/j.crma.2010.12.003}, language = {fr}, }
Jean-Michel Bismut. Laplacien hypoelliptique et cohomologie de Bott–Chern. Comptes Rendus. Mathématique, Volume 349 (2011) no. 1-2, pp. 75-80. doi : 10.1016/j.crma.2010.12.003. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.12.003/
[1] The index of elliptic operators. IV, Ann. of Math. (2), Volume 93 (1971), pp. 119-138
[2] Heat Kernels and Dirac Operators, Grundl. Math. Wiss., Band 298, Springer-Verlag, Berlin, 1992
[3] The Atiyah–Singer index theorem for families of Dirac operators: two heat equation proofs, Invent. Math., Volume 83 (1986) no. 1, pp. 91-151
[4] A local index theorem for non-Kähler manifolds, Math. Ann., Volume 284 (1989) no. 4, pp. 681-699
[5] The hypoelliptic Laplacian on the cotangent bundle, J. Amer. Math. Soc., Volume 18 (2005) no. 2, pp. 379-476 (electronic)
[6] The hypoelliptic Dirac operator, Geometry and Dynamics of Groups and Spaces, Progr. Math., vol. 265, Birkhäuser, Basel, 2008, pp. 113-246
[7] J.-M. Bismut, Hypoelliptic Laplacian and Bott–Chern cohomology, preprint (Orsay), 2011.
[8] Analytic torsion and holomorphic determinant bundles. II. Direct images and Bott–Chern forms, Comm. Math. Phys., Volume 115 (1988) no. 1, pp. 79-126
[9] Higher analytic torsion forms for direct images and anomaly formulas, J. Algebraic Geom., Volume 1 (1992) no. 4, pp. 647-684
[10] The Hypoelliptic Laplacian and Ray–Singer Metrics, Annals of Mathematics Studies, vol. 167, Princeton University Press, Princeton, NJ, 2008
[11] Flat vector bundles, direct images and higher real analytic torsion, J. Amer. Math. Soc., Volume 8 (1995) no. 2, pp. 291-363
[12] Hermitian vector bundles and the equidistribution of the zeroes of their holomorphic sections, Acta Math., Volume 114 (1965), pp. 71-112
[13] Complex analytic and differential geometry, 2009 http://www-fourier.ujf-grenoble.fr/~demailly/manuscripts/agbook.pdf (OpenContent Book)
[14] Ein Theorem der analytischen Garbentheorie und die Modulräume komplexer Strukturen, Inst. Hautes Études Sci. Publ. Math., Volume 5 (1960), p. 64
[15] Chern classes in Deligne cohomology for coherent analytic sheaves, Math. Ann., Volume 347 (2010) no. 2, pp. 249-284
[16] Superconnections and the Chern character, Topology, Volume 24 (1985) no. 1, pp. 89-95
[17] Autour de la cohomologie de Bott–Chern, 2007 | arXiv
- Twisted Frölicher-type inequality on foliations, Journal of Geometry and Physics, Volume 197 (2024), p. 10 (Id/No 105083) | DOI:10.1016/j.geomphys.2023.105083 | Zbl:1548.32042
- Boundary conditions and subelliptic estimates for geometric Kramers-Fokker-Planck operators on manifolds with boundaries, Memoirs of the American Mathematical Society, 1200, Providence, RI: American Mathematical Society (AMS), 2018 | DOI:10.1090/memo/1200 | Zbl:1419.35001
- Degree of non-Kählerianity for 6-dimensional nilmanifolds, Manuscripta Mathematica, Volume 148 (2015) no. 1-2, pp. 177-211 | DOI:10.1007/s00229-015-0734-x | Zbl:1326.57057
- Cohomology of Complex Manifolds, Cohomological Aspects in Complex Non-Kähler Geometry, Volume 2095 (2014), p. 65 | DOI:10.1007/978-3-319-02441-7_2
- Precise Arrhenius law for
-forms: the Witten Laplacian and Morse-Barannikov complex, Annales Henri Poincaré, Volume 14 (2013) no. 3, pp. 567-610 | DOI:10.1007/s00023-012-0193-9 | Zbl:1275.58018 - On the
-lemma and Bott-Chern cohomology, Inventiones Mathematicae, Volume 192 (2013) no. 1, pp. 71-81 | DOI:10.1007/s00222-012-0406-3 | Zbl:1271.32011
Cité par 6 documents. Sources : Crossref, zbMATH
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier