Comptes Rendus
Familles d'immersions holomorphes et formes de torsion analytique équivariantes
Comptes Rendus. Mathématique, Volume 334 (2002) no. 10, pp. 893-897.

Dans cette Note, on étend les résultats sur le comportement par immersion des formes de torsion analytique holomorphes dans un contexte équivariant.

In this Note, we extend the known results on the behaviour by immersion of the holomorphic analytic torsion forms to the equivariant case.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(02)02372-5

Jean-Michel Bismut 1 ; Xiaonan Ma 2

1 Département de mathématique, Université Paris-Sud, bâtiment 425, 91405 Orsay, France
2 Centre de mathématiques, École polytechnique, 91128 Palaiseau cedex, France
@article{CRMATH_2002__334_10_893_0,
     author = {Jean-Michel Bismut and Xiaonan Ma},
     title = {Familles d'immersions holomorphes et formes de torsion analytique \'equivariantes},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {893--897},
     publisher = {Elsevier},
     volume = {334},
     number = {10},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02372-5},
     language = {fr},
}
TY  - JOUR
AU  - Jean-Michel Bismut
AU  - Xiaonan Ma
TI  - Familles d'immersions holomorphes et formes de torsion analytique équivariantes
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 893
EP  - 897
VL  - 334
IS  - 10
PB  - Elsevier
DO  - 10.1016/S1631-073X(02)02372-5
LA  - fr
ID  - CRMATH_2002__334_10_893_0
ER  - 
%0 Journal Article
%A Jean-Michel Bismut
%A Xiaonan Ma
%T Familles d'immersions holomorphes et formes de torsion analytique équivariantes
%J Comptes Rendus. Mathématique
%D 2002
%P 893-897
%V 334
%N 10
%I Elsevier
%R 10.1016/S1631-073X(02)02372-5
%G fr
%F CRMATH_2002__334_10_893_0
Jean-Michel Bismut; Xiaonan Ma. Familles d'immersions holomorphes et formes de torsion analytique équivariantes. Comptes Rendus. Mathématique, Volume 334 (2002) no. 10, pp. 893-897. doi : 10.1016/S1631-073X(02)02372-5. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02372-5/

[1] J.-M. Bismut The Atiyah–Singer index theorem for families of Dirac operators: two heat equation proofs, Invent. Math., Volume 83 (1986) no. 1, pp. 91-151

[2] J.-M. Bismut Superconnection currents and complex immersions, Invent. Math., Volume 99 (1990) no. 1, pp. 59-113

[3] J.-M. Bismut Equivariant short exact sequences of vector bundles and their analytic torsion forms, Compositio Math., Volume 93 (1994) no. 3, pp. 291-354

[4] J.-M. Bismut Equivariant immersions and Quillen metrics, J. Differential Geom., Volume 41 (1995) no. 1, pp. 53-157

[5] J.-M. Bismut Holomorphic families of immersions and higher analytic torsion forms, Astérisque, Volume 244 (1997), p. viii+275

[6] J.-M. Bismut; H. Gillet; C. Soulé Analytic torsion and holomorphic determinant bundles. I. Bott–Chern forms and analytic torsion, Comm. Math. Phys., Volume 115 (1988) no. 1, pp. 49-78

[7] J.-M. Bismut; H. Gillet; C. Soulé Analytic torsion and holomorphic determinant bundles. II. Direct images and Bott–Chern forms, Comm. Math. Phys., Volume 115 (1988) no. 1, pp. 79-126

[8] J.-M. Bismut; H. Gillet; C. Soulé Analytic torsion and holomorphic determinant bundles. III. Quillen metrics on holomorphic determinants, Comm. Math. Phys., Volume 115 (1988) no. 2, pp. 301-351

[9] J.-M. Bismut; K. Köhler Higher analytic torsion forms for direct images and anomaly formulas, J. Algebraic Geom., Volume 1 (1992) no. 4, pp. 647-684

[10] J.-M. Bismut; G. Lebeau Complex immersions and Quillen metrics, Inst. Hautes Études Sci. Publ. Math., Volume 74 (1991), p. ii+298

[11] J.-M. Bismut, X. Ma, Holomorphic immersions and equivariant torsion forms, Preprint Université Paris-Sud, Orsay, 2002

[12] H. Gillet; C. Soulé Analytic torsion and the arithmetic Todd genus, Topology, Volume 30 (1991) no. 1, pp. 21-54 (With an appendix by D. Zagier)

[13] H. Gillet; C. Soulé An arithmetic Riemann–Roch theorem, Invent. Math., Volume 110 (1992) no. 3, pp. 473-543

[14] K. Köhler, A Hirzeburch proportionality principle in Arakelov geometry, Preprint, 2002

[15] K. Köhler; D. Roessler A fixed point formula of Lefschetz type in Arakelov geometry I: statement and proof, Invent. Math., Volume 145 (2001) no. 2, pp. 333-396

[16] K. Köhler; D. Roessler A fixed point formula of Lefschetz type in Arakelov geometry II: a residual formula, Ann. Inst. Fourier, Volume 52 (2002), pp. 81-103

[17] X. Ma Submersions and equivariant Quillen metrics, Ann. Inst. Fourier (Grenoble), Volume 50 (2000) no. 5, pp. 1539-1588

[18] V. Maillot, D. Roessler, Conjectures sur les dérivées logarithmiques des fonctions L d'Artin aux entiers négatifs, Preprint, 2002

[19] D. Quillen Determinants of Cauchy–Riemann operators on Riemann surfaces, Functional Anal. Appl., Volume 19 (1985) no. 1, pp. 31-34

[20] D. Quillen Superconnections and the Chern character, Topology, Volume 24 (1985) no. 1, pp. 89-95

[21] D.B. Ray; I.M. Singer Analytic torsion for complex manifolds, Ann. of Math. (2), Volume 98 (1973), pp. 154-177

[22] D. Roessler An Adams–Riemann–Roch theorem in Arakelov geometry, Duke Math. J., Volume 96 (1999) no. 1, pp. 61-126

Cité par Sources :

Commentaires - Politique