[Conducteurs des revêtements avec ramification sauvage, II]
Soit k un corps algébriquement clos de caractéristique p. Soit un revêtement fini galoisien, de groupe G, ramifié seulement au-dessus d'un point (avec ramification sauvage). On montre l'existence d'un revêtement de ce type avec tous conducteurs suffisamment grands quand les p-Sylow de G sont d'ordre p. La démonstration consiste à étudier la géométrie formelle.
Consider a wildly ramified G-Galois cover of curves branched at only one point over an algebraically closed field k of characteristic p. In this note, I prove using formal patching that all sufficiently large conductors occur for such covers φ when the Sylow p-subgroups of G have order p.
Accepté le :
Publié le :
Rachel J. Pries 1
@article{CRMATH_2002__335_5_485_0, author = {Rachel J. Pries}, title = {Conductors of wildly ramified covers, {II}}, journal = {Comptes Rendus. Math\'ematique}, pages = {485--487}, publisher = {Elsevier}, volume = {335}, number = {5}, year = {2002}, doi = {10.1016/S1631-073X(02)02492-5}, language = {en}, }
Rachel J. Pries. Conductors of wildly ramified covers, II. Comptes Rendus. Mathématique, Volume 335 (2002) no. 5, pp. 485-487. doi : 10.1016/S1631-073X(02)02492-5. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02492-5/
[1] Field Arithmetic, Springer-Verlag, Berlin, 1986
[2] Abhyankar's conjecture on Galois groups over curves, Invent. Math., Volume 117 (1994) no. 1, pp. 1-25
[3] Patching and thickening problems, J. Algebra, Volume 212 (1999) no. 1, pp. 272-304
[4] R. Pries, Conductors of wildly ramified covers, I, Preprint, 2001
[5] R. Pries, Conductors of wildly ramified covers, III, Preprint, 2001
[6] R. Pries, Families of wildly ramified covers of curves, Amer. J. Math., accepted
[7] Revêtements de la droite affine en caractéristique p>0 et conjecture d'Abhyankar, Invent. Math., Volume 116 (1994) no. 1–3, pp. 425-462
Cité par Sources :
Commentaires - Politique