[Steinberg representation and idempotent relations]
We prove an analogue in the Green ring of a result obtained by Bhama Srinivasan on the Steinberg character. This implies isogenies between products of Jacobians of quotients of projective, smooth and geometrically connected curves.
Nous démontrons l'analogue dans l'anneau de Green d'un résultat de Bhama Srinivasan sur le caractère de Steinberg. L'identité obtenue a pour conséquence des isogénies entre produits de jacobiennes de quotients de courbes projectives, lisses et géométriquement connexes.
Revised:
Published online:
François Sauvageot 1
@article{CRMATH_2002__335_6_505_0, author = {Fran\c{c}ois Sauvageot}, title = {Repr\'esentation de {Steinberg} et identit\'es de projecteurs}, journal = {Comptes Rendus. Math\'ematique}, pages = {505--508}, publisher = {Elsevier}, volume = {335}, number = {6}, year = {2002}, doi = {10.1016/S1631-073X(02)02523-2}, language = {fr}, }
François Sauvageot. Représentation de Steinberg et identités de projecteurs. Comptes Rendus. Mathématique, Volume 335 (2002) no. 6, pp. 505-508. doi : 10.1016/S1631-073X(02)02523-2. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02523-2/
[1] Burnside rings, Handbook of Algebra, 2, Elsevier, 2000
[2] Finite Groups of Lie Type, Wiley-Interscience, 1985
[3] I. Chen, The Jacobian of modular curves associated to Cartan subgroups, Ph.D. thesis, University of Oxford, 1996
[4] The Jacobian of non-split Cartan modular curves, Proc. London Math. Soc. (3), Volume 77 (1998), pp. 1-38
[5] On relations between Jacobians of certain modular curves, J. Algebra, Volume 231 (2000) no. 1, pp. 414-448
[6] Methods of Representation Theory with Applications to Finite Groups and Orders, Wiley-Interscience, 1981
[7] Sur un résultat d'Imin Chen, Math. Res. Lett., Volume 7 (2000), pp. 147-153
[8] S.J. Edixhoven, On a result of Imin Chen, Prépublication 96-16 de l'IRMAR, Rennes, mai 1996. Mais voir aussi arXiv | arXiv
[9] Idempotent relations and factors of Jacobians, Math. Ann., Volume 284 (1989) no. 2, pp. 307-327
[10] Rational tori, semisimple orbits and the topology of hyperplane complements, Comment. Math. Helv., Volume 67 (1992) no. 2, pp. 226-251
[11] Repésentations linéaires des groupes finis, Hermann, Paris, 1978
[12] On the Steinberg character of a finite simple group of Lie type, J. Australian Math. Soc., Volume 12 (1971), pp. 1-14
Cited by Sources:
Comments - Policy