[Support des mesures unitarisantes de l'algèbre de Virasoro]
Une mesure unitarisante de l'algèbre de Virasoro est une mesure de probabilité telle que l'espace L2 associé contienne un sous-espace fermé de fonctionnelles holomorphes sur lequel l'algèbre de Virasoro agit de façon unitaire. On a caractérisé les mesures unitarisantes par une formule d'intégration par parties qui a été explicitement calculée. Dans cette Note on montre qu'une mesure unitarisante doit être portée par le quotient du groupe des homéomorphismes du cercle par le sous-groupe des transformations de Möbius.
A unitarizing measure is a probability measure such that the associated L2 space contains a closed subspace of holomorphic functionals on which the Virasoro algebra acts unitarily. It has been shown that the unitarizing property is equivalent to an a priori given formula of integration by parts, which has been computed explicitly. We show in this Note that unitarizing measures must be supported by the quotient of the homeomorphism group of the circle by the subgroup of Möbius transformations.
Accepté le :
Publié le :
Hélène Airault 1 ; Paul Malliavin 2 ; Anton Thalmaier 3
@article{CRMATH_2002__335_7_621_0, author = {H\'el\`ene Airault and Paul Malliavin and Anton Thalmaier}, title = {Support of {Virasoro} unitarizing measures}, journal = {Comptes Rendus. Math\'ematique}, pages = {621--626}, publisher = {Elsevier}, volume = {335}, number = {7}, year = {2002}, doi = {10.1016/S1631-073X(02)02539-6}, language = {en}, }
Hélène Airault; Paul Malliavin; Anton Thalmaier. Support of Virasoro unitarizing measures. Comptes Rendus. Mathématique, Volume 335 (2002) no. 7, pp. 621-626. doi : 10.1016/S1631-073X(02)02539-6. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02539-6/
[1] Mesure univarisante: algèbre de Heisenberg, algèbre de Virasoro, C. R. Acad. Sci. Paris, Série I, Volume 334 (2002), pp. 787-792
[2] Unitarizing probability measures for representations of Virasoro algebra, J. Math. Pures Appl. (9), Volume 80 (2001) no. 6, pp. 627-667
[3] H. Airault, J. Ren, Modulus of continuity of the canonical Browninan motion “on the group of diffeomorphisms of the circle”, Preprint LAMFA-CNRS, 2002
[4] The Ricci curvature of , J. Math. Phys., Volume 29 (1988) no. 9, pp. 1979-1981
[5] S. Fang, Canonical Brownian motion on the diffeomorphism group of the circle, Preprint Université de Bourgogne, Dijon, 2002
[6] The canonic diffusion above the diffeomorphism group of the circle, C. R. Acad. Sci. Paris, Série I, Volume 329 (1999) no. 4, pp. 325-329
[7] Integration on loop group III. Asymptotic Peter–Weyl orthogonality, J. Funct. Anal., Volume 108 (1992), pp. 13-46
Cité par Sources :
Commentaires - Politique