Comptes Rendus
Existence, uniqueness and stability of backward stochastic differential equations with locally monotone coefficient
[Existence, unicité et stabilité des équations différentielles stochastiques rétrogrades à coefficient localement monotone]
Comptes Rendus. Mathématique, Volume 335 (2002) no. 9, pp. 757-762.

Nous prouvons l'existence, l'unicité et la stabilité des solutions d'équations différentielles stochastiques rétrogrades (EDSR), dont le coefficient vérifie une condition de type monotonie locale. Ces resultats sont obtenus avec un coefficient de croissance presque quadratique et une donnée terminale de carré intégrable. De plus le coefficient peut être ni localement Lipschitz en y ni en z.

We prove existence, uniqueness and stability of the solution for multidimensional backward stochastic differential equations (BSDE) with locally monotone coefficient. This is done with an almost quadratic growth coefficient and a square integrable terminal data. The coefficient could be neither locally Lipschitz in the variable y nor in the variable z.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(02)02542-6

Khaled Bahlali 1, 2 ; E.H. Essaky 3 ; M. Hassani 3 ; Etienne Pardoux 4

1 UFR sciences, UTV, BP 132, 83957 La Garde cedex, France
2 Centre de physique théorique, CNRS Luminy, case 907, 13288 Marseille cedex 9, France
3 Université Cadi Ayyad, faculté des sciences Semlalia, département de mathématiques, BP 2390, 40000 Marrakech, Morocco
4 LATP, CNRS-UMR 6632, CMI, Université de Provence, 39, rue F. Joliot-Curie, 13453 Marseille cedex 13, France
@article{CRMATH_2002__335_9_757_0,
     author = {Khaled Bahlali and E.H. Essaky and M. Hassani and Etienne Pardoux},
     title = {Existence, uniqueness and stability of backward stochastic differential equations with locally monotone coefficient},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {757--762},
     publisher = {Elsevier},
     volume = {335},
     number = {9},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02542-6},
     language = {en},
}
TY  - JOUR
AU  - Khaled Bahlali
AU  - E.H. Essaky
AU  - M. Hassani
AU  - Etienne Pardoux
TI  - Existence, uniqueness and stability of backward stochastic differential equations with locally monotone coefficient
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 757
EP  - 762
VL  - 335
IS  - 9
PB  - Elsevier
DO  - 10.1016/S1631-073X(02)02542-6
LA  - en
ID  - CRMATH_2002__335_9_757_0
ER  - 
%0 Journal Article
%A Khaled Bahlali
%A E.H. Essaky
%A M. Hassani
%A Etienne Pardoux
%T Existence, uniqueness and stability of backward stochastic differential equations with locally monotone coefficient
%J Comptes Rendus. Mathématique
%D 2002
%P 757-762
%V 335
%N 9
%I Elsevier
%R 10.1016/S1631-073X(02)02542-6
%G en
%F CRMATH_2002__335_9_757_0
Khaled Bahlali; E.H. Essaky; M. Hassani; Etienne Pardoux. Existence, uniqueness and stability of backward stochastic differential equations with locally monotone coefficient. Comptes Rendus. Mathématique, Volume 335 (2002) no. 9, pp. 757-762. doi : 10.1016/S1631-073X(02)02542-6. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02542-6/

[1] K. Bahlali Backward stochastic differential equations with locally Lipschitz coefficient, C. R. Acad Sci. Paris, Série I, Volume 331 (2001), pp. 481-486

[2] K. Bahlali Multidimensional backward stochastic differential equations with locally Lipschitz coefficient, Elect. Comm. Probab., Volume 7 (2002), pp. 169-179

[3] K. Bahlali; E. Essaky; Y. Labed Reflected backward stochastic differential equations with locally Lipschitz coefficient, International Conference on Stochastic Analysis and Applications, 22–27 October 2001, Hammamet, Tunisia (2001)

[4] K. Bahlali; B. Mezerdi; Y. Ouknine Some generic properties in backward stochastic differential equations, Monte Carlo and Probabilistic Methods for Partial Differential Equations, Monte Carlo, 2000 (Monte Carlo Methods Appl.), Volume 7 (2001) no. 1–2, pp. 15-19

[5] P. Briand; R. Carmona BSDEs with polynomial growth generators, J. Appl. Math. Stochastic Anal., Volume 13 (2000) no. 3, pp. 207-238

[6] A. Dermoune; S. Hamadène; Y. Ouknine Backward stochastic differential equation with local time, Stoch. Stoch. Rep., Volume 66 (1999), pp. 103-119

[7] R. Darling; É. Pardoux Backward SDE with monotonicity and random terminal time, Ann. Probab., Volume 25 (1997), pp. 1135-1159

[8] S. Hamadène, Multidimentional backward SDE's with uniformly continuous coefficients, Preprint

[9] S. Hamadène Équations différentielles stochastiques rétrogrades, le cas localement lipschitzien, Ann. Inst. H. Poincaré, Volume 32 (1996), pp. 645-660

[10] S. Hamadène; J.P. Lepeletier; S. Peng BSDE with continuous coefficients and applications to Markovian nonzero sum stochastic differential games (N. El-Karoui; S. Mazliak, eds.), Pitman Res. Notes Math. Ser., 364, 1997

[11] M. Hassani, Y. Ouknine, On a general result for backward stochastic differential equations, Stoch. Stoch. Rep., 2001, to appear

[12] M. Hassani; Y. Ouknine Infinite dimensional BSDE with jumps, Stochastic Anal. Appl., Volume 20 (2002) no. 3

[13] N. El Karoui; S. Peng; M.C. Quenez Backward stochastic differential equations in finance, Math. Finance, Volume 7 (1997), pp. 1-71

[14] M. Kobylanski Backward stochastic differential equations and partial differential equations with quadratic growth, Ann. Probab., Volume 28 (2000) no. 2, pp. 558-602

[15] J.P. Lepeltier; J.San Martin Backward stochastic differential equation with continuous coefficient, Statist. Probab. Lett., Volume 32 (1997), pp. 425-430

[16] J.P. Lepeltier; J. San Martin Existence for BSDE with superlinear-quadratic coefficients, Stoch. Stoch. Rep., Volume 63 (1998), pp. 227-240

[17] X. Mao Adapted solutions of backward stochastic differential equations with non-Lipschitz coefficient, Stochastic Process. Appl., Volume 58 (1995), pp. 281-292

[18] M. N'zi Multivalued backward stochastic differential equations with local Lipschitz drift, Stoch. Stoch. Rep., Volume 60 (1998), pp. 205-218

[19] M. N'zi; Y. Ouknine Multivalued backward stochastic differential equations with continuous drift, Rand. Oper. Stochastic Equations (1996)

[20] E. Pardoux BSDE's, weak convergence and homogenization of semilinear PDEs (F. Clarke; R. Stern, eds.), Nonlinear Analysis Differential Equations and Control, Kluwer Academic, Dordrecht, 1999, pp. 503-549

[21] E. Pardoux; S. Peng Adapted solution of a backward stochastic differential equation, System Control Lett., Volume 14 (1990), pp. 55-61

[22] E. Pardoux; S. Peng Backward SDEs and quasilinear PDEs (B.L. Rozovskii; R. Sowers, eds.), Stochastic Partial Differential Equations and their Applications, Lecture Notes and Inform. Sci., 176, 1992, pp. 200-217

[23] E. Pardoux; A. Răşcanu Backward stochastic differential equations with subdifferential operator and related variational inequalities, Stochastic Process. Appl., Volume 76 (1998) no. 2, pp. 191-215

[24] S. Rong On solutions of backward stochastic differential equations with jumps and applications, Stochastic Process. Appl., Volume 66 (1997) no. 2, pp. 209-236

Cité par Sources :

Commentaires - Politique