[Existence, unicité et stabilité des équations différentielles stochastiques rétrogrades à coefficient localement monotone]
Nous prouvons l'existence, l'unicité et la stabilité des solutions d'équations différentielles stochastiques rétrogrades (EDSR), dont le coefficient vérifie une condition de type monotonie locale. Ces resultats sont obtenus avec un coefficient de croissance presque quadratique et une donnée terminale de carré intégrable. De plus le coefficient peut être ni localement Lipschitz en y ni en z.
We prove existence, uniqueness and stability of the solution for multidimensional backward stochastic differential equations (BSDE) with locally monotone coefficient. This is done with an almost quadratic growth coefficient and a square integrable terminal data. The coefficient could be neither locally Lipschitz in the variable y nor in the variable z.
Accepté le :
Publié le :
Khaled Bahlali 1, 2 ; E.H. Essaky 3 ; M. Hassani 3 ; Etienne Pardoux 4
@article{CRMATH_2002__335_9_757_0, author = {Khaled Bahlali and E.H. Essaky and M. Hassani and Etienne Pardoux}, title = {Existence, uniqueness and stability of backward stochastic differential equations with locally monotone coefficient}, journal = {Comptes Rendus. Math\'ematique}, pages = {757--762}, publisher = {Elsevier}, volume = {335}, number = {9}, year = {2002}, doi = {10.1016/S1631-073X(02)02542-6}, language = {en}, }
TY - JOUR AU - Khaled Bahlali AU - E.H. Essaky AU - M. Hassani AU - Etienne Pardoux TI - Existence, uniqueness and stability of backward stochastic differential equations with locally monotone coefficient JO - Comptes Rendus. Mathématique PY - 2002 SP - 757 EP - 762 VL - 335 IS - 9 PB - Elsevier DO - 10.1016/S1631-073X(02)02542-6 LA - en ID - CRMATH_2002__335_9_757_0 ER -
%0 Journal Article %A Khaled Bahlali %A E.H. Essaky %A M. Hassani %A Etienne Pardoux %T Existence, uniqueness and stability of backward stochastic differential equations with locally monotone coefficient %J Comptes Rendus. Mathématique %D 2002 %P 757-762 %V 335 %N 9 %I Elsevier %R 10.1016/S1631-073X(02)02542-6 %G en %F CRMATH_2002__335_9_757_0
Khaled Bahlali; E.H. Essaky; M. Hassani; Etienne Pardoux. Existence, uniqueness and stability of backward stochastic differential equations with locally monotone coefficient. Comptes Rendus. Mathématique, Volume 335 (2002) no. 9, pp. 757-762. doi : 10.1016/S1631-073X(02)02542-6. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02542-6/
[1] Backward stochastic differential equations with locally Lipschitz coefficient, C. R. Acad Sci. Paris, Série I, Volume 331 (2001), pp. 481-486
[2] Multidimensional backward stochastic differential equations with locally Lipschitz coefficient, Elect. Comm. Probab., Volume 7 (2002), pp. 169-179
[3] Reflected backward stochastic differential equations with locally Lipschitz coefficient, International Conference on Stochastic Analysis and Applications, 22–27 October 2001, Hammamet, Tunisia (2001)
[4] Some generic properties in backward stochastic differential equations, Monte Carlo and Probabilistic Methods for Partial Differential Equations, Monte Carlo, 2000 (Monte Carlo Methods Appl.), Volume 7 (2001) no. 1–2, pp. 15-19
[5] BSDEs with polynomial growth generators, J. Appl. Math. Stochastic Anal., Volume 13 (2000) no. 3, pp. 207-238
[6] Backward stochastic differential equation with local time, Stoch. Stoch. Rep., Volume 66 (1999), pp. 103-119
[7] Backward SDE with monotonicity and random terminal time, Ann. Probab., Volume 25 (1997), pp. 1135-1159
[8] S. Hamadène, Multidimentional backward SDE's with uniformly continuous coefficients, Preprint
[9] Équations différentielles stochastiques rétrogrades, le cas localement lipschitzien, Ann. Inst. H. Poincaré, Volume 32 (1996), pp. 645-660
[10] BSDE with continuous coefficients and applications to Markovian nonzero sum stochastic differential games (N. El-Karoui; S. Mazliak, eds.), Pitman Res. Notes Math. Ser., 364, 1997
[11] M. Hassani, Y. Ouknine, On a general result for backward stochastic differential equations, Stoch. Stoch. Rep., 2001, to appear
[12] Infinite dimensional BSDE with jumps, Stochastic Anal. Appl., Volume 20 (2002) no. 3
[13] Backward stochastic differential equations in finance, Math. Finance, Volume 7 (1997), pp. 1-71
[14] Backward stochastic differential equations and partial differential equations with quadratic growth, Ann. Probab., Volume 28 (2000) no. 2, pp. 558-602
[15] Backward stochastic differential equation with continuous coefficient, Statist. Probab. Lett., Volume 32 (1997), pp. 425-430
[16] Existence for BSDE with superlinear-quadratic coefficients, Stoch. Stoch. Rep., Volume 63 (1998), pp. 227-240
[17] Adapted solutions of backward stochastic differential equations with non-Lipschitz coefficient, Stochastic Process. Appl., Volume 58 (1995), pp. 281-292
[18] Multivalued backward stochastic differential equations with local Lipschitz drift, Stoch. Stoch. Rep., Volume 60 (1998), pp. 205-218
[19] Multivalued backward stochastic differential equations with continuous drift, Rand. Oper. Stochastic Equations (1996)
[20] BSDE's, weak convergence and homogenization of semilinear PDEs (F. Clarke; R. Stern, eds.), Nonlinear Analysis Differential Equations and Control, Kluwer Academic, Dordrecht, 1999, pp. 503-549
[21] Adapted solution of a backward stochastic differential equation, System Control Lett., Volume 14 (1990), pp. 55-61
[22] Backward SDEs and quasilinear PDEs (B.L. Rozovskii; R. Sowers, eds.), Stochastic Partial Differential Equations and their Applications, Lecture Notes and Inform. Sci., 176, 1992, pp. 200-217
[23] Backward stochastic differential equations with subdifferential operator and related variational inequalities, Stochastic Process. Appl., Volume 76 (1998) no. 2, pp. 191-215
[24] On solutions of backward stochastic differential equations with jumps and applications, Stochastic Process. Appl., Volume 66 (1997) no. 2, pp. 209-236
Cité par Sources :
Commentaires - Politique