[EDSR multidimensionnelles à croissance surlinéaire : Application aux systèmes d'EDP dégénérées]
Nous établissons l'existence, l'unicité et la stability des solutions fortes pour des équations différentielles stochastiques rétrogrades (EDSR) avec une condition terminale p-integrable
We establish the existence and uniqueness as well as the stability of p-integrable solutions to multidimensional backward stochastic differential equations (BSDEs) with super-linear growth coefficient and a p-integrable terminal condition
Accepté le :
Publié le :
K. Bahlali 1 ; E. Essaky 2 ; M. Hassani 2
@article{CRMATH_2010__348_11-12_677_0, author = {K. Bahlali and E. Essaky and M. Hassani}, title = {Multidimensional {BSDEs} with super-linear growth coefficient: {Application} to degenerate systems of semilinear {PDEs}}, journal = {Comptes Rendus. Math\'ematique}, pages = {677--682}, publisher = {Elsevier}, volume = {348}, number = {11-12}, year = {2010}, doi = {10.1016/j.crma.2010.03.006}, language = {en}, }
TY - JOUR AU - K. Bahlali AU - E. Essaky AU - M. Hassani TI - Multidimensional BSDEs with super-linear growth coefficient: Application to degenerate systems of semilinear PDEs JO - Comptes Rendus. Mathématique PY - 2010 SP - 677 EP - 682 VL - 348 IS - 11-12 PB - Elsevier DO - 10.1016/j.crma.2010.03.006 LA - en ID - CRMATH_2010__348_11-12_677_0 ER -
%0 Journal Article %A K. Bahlali %A E. Essaky %A M. Hassani %T Multidimensional BSDEs with super-linear growth coefficient: Application to degenerate systems of semilinear PDEs %J Comptes Rendus. Mathématique %D 2010 %P 677-682 %V 348 %N 11-12 %I Elsevier %R 10.1016/j.crma.2010.03.006 %G en %F CRMATH_2010__348_11-12_677_0
K. Bahlali; E. Essaky; M. Hassani. Multidimensional BSDEs with super-linear growth coefficient: Application to degenerate systems of semilinear PDEs. Comptes Rendus. Mathématique, Volume 348 (2010) no. 11-12, pp. 677-682. doi : 10.1016/j.crma.2010.03.006. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.03.006/
[1] Backward stochastic differential equations with locally Lipschitz coefficient, C. R. Acad. Sci. Paris, Ser. I, Volume 333 (2001) no. 5, pp. 481-486
[2] Existence and uniqueness of solutions for BSDEs with locally Lipschitz coefficient, Electron. Comm. Probab., Volume 7 (2002), pp. 169-179
[3] Existence, uniqueness and stability of backward stochastic differential equations with locally monotone coefficient, C. R. Acad. Sci. Paris, Ser. I, Volume 335 (2002) no. 9, pp. 757-762
[4] Weak solutions for SPDEs and backward doubly stochastic differential equations, J. Theoret. Probab., Volume 14 (2001) no. 1, pp. 125-164
[5] SDE, BSDE and PDE: Backward Stochastic Differential Equations (N. El Karoui; L. Mazliak, eds.), Pitman Research Notes in Math. Series, vol. 364, Longman, 1997
[6]
[7] Backward stochastic differential equations in finance, Math. Finance, Volume 7 (1997), pp. 1-71
[8] Linear and Quasilinear Equations of Parabolic Type, Translation of Mathematical Monographs, AMS, Providence, RI, 1968
[9] Adapted solution of a backward stochastic differential equation, Systems Control Lett., Volume 14 (1990), pp. 55-61
Cité par Sources :
Commentaires - Politique