[Sur la jonction des plaques et des poutres élastiques]
On considère le système linéarisé de l'élasticité, dans un multidomaine de
We consider the linearized elasticity system in a multidomain of
Accepté le :
Publié le :
Antonio Gaudiello 1 ; Régis Monneau 2 ; Jacqueline Mossino 3 ; François Murat 4 ; Ali Sili 5
@article{CRMATH_2002__335_8_717_0, author = {Antonio Gaudiello and R\'egis Monneau and Jacqueline Mossino and Fran\c{c}ois Murat and Ali Sili}, title = {On the junction of elastic plates and beams}, journal = {Comptes Rendus. Math\'ematique}, pages = {717--722}, publisher = {Elsevier}, volume = {335}, number = {8}, year = {2002}, doi = {10.1016/S1631-073X(02)02543-8}, language = {en}, }
TY - JOUR AU - Antonio Gaudiello AU - Régis Monneau AU - Jacqueline Mossino AU - François Murat AU - Ali Sili TI - On the junction of elastic plates and beams JO - Comptes Rendus. Mathématique PY - 2002 SP - 717 EP - 722 VL - 335 IS - 8 PB - Elsevier DO - 10.1016/S1631-073X(02)02543-8 LA - en ID - CRMATH_2002__335_8_717_0 ER -
Antonio Gaudiello; Régis Monneau; Jacqueline Mossino; François Murat; Ali Sili. On the junction of elastic plates and beams. Comptes Rendus. Mathématique, Volume 335 (2002) no. 8, pp. 717-722. doi : 10.1016/S1631-073X(02)02543-8. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02543-8/
[1] A variational definition of the strain energy for an elastic string, J. Elasticity, Volume 25 (1991), pp. 137-148
[2] Dimension reduction in variational problems, asymptotic development in Γ-convergence and thin structures in elasticity, Asymptotic Anal., Volume 9 (1994) no. 1, pp. 61-100
[3] Thin elastic and periodic plates, Math. Methods Appl. Sci., Volume 6 (1984), pp. 159-191
[4] Plates and Junctions in Elastic Multi-Structures: An Asymptotic Analysis, Masson, Paris, 1990
[5] Mathematical Elasticity, Vol. II: Theory of Plates, North-Holland, Amsterdam, 1997
[6] A justification of the two-dimensional linear plate model, J. Mécanique, Volume 18 (1979), pp. 315-344
[7] Homogenization of Reticulated Structures, Appl. Math. Sci., 139, Springer-Verlag, New York, 1999
[8] Asymptotics of arbitrary order for a thin elastic clamped plate, I: Optimal error estimates, Asymptotic Anal., Volume 13 (1996), pp. 167-197
[9] Rigourous derivation of nonlinear plate theory and geometric rigidity, C. R. Acad. Sci. Paris, Série I, Volume 334 (2002), pp. 173-178
[10] Asymptotic analysis of a class of minimization problems in a thin multidomain, Calc. Var. Partial Differential Equations, Volume 15 (2002) no. 2, pp. 181-201
[11] Asymptotic analysis for monotone quasilinear problems in thin multidomains, Differential Integral Equations, Volume 15 (2002), pp. 623-640
[12] A. Gaudiello, R. Monneau, J. Mossino, F. Murat, A. Sili, Junction of elastic plates and beams, in preparation
[13] Modélisation de la jonction entre une plaque et une poutre en élasticité linéarisée, Modélisation Mathématique et Analyse Numérique, Volume 27 (1993), pp. 77-105
[14] Asymptotic representation of elastic fields in a multi-structure, Asymptotic Anal., Volume 11 (1995), pp. 343-415
[15] Problèmes Variationnels dans les Multi-domaines : Modélisation des Jonctions et Applications, Masson, Paris, 1991
[16] Convergence of displacements and stresses in linearly elastic slender rods as the thickness goes to zero, Asymptotic Anal., Volume 10 (1995), pp. 367-402
[17] The nonlinear membrane model as variational limit of nonlinear three-dimensional elasticity, J. Math. Pures Appl., Volume 74 (1995), pp. 549-578
[18] The membrane shell model in nonlinear elasticity: a variational asymptotic derivation, J. Nonlinear Sci., Volume 6 (1996), pp. 59-84
[19] Comportement asymptotique des solutions du sytème de l'élasticité linéarisée anisotrope hétérogène dans des cylindres minces, C. R. Acad. Sci. Paris, Série I, Volume 328 (1999), pp. 179-184
[20] F. Murat, A. Sili, Anisotropic, heterogeneous, linearized elasticity problems in thin cylinders, to appear
[21] Mathematical Problems in Elasticity and Homogenization, North-Holland, 1992
[22] Thin elastic beams: the variational approach to St. Venant's problem, Asymptotic Anal., Volume 20 (1999), pp. 39-60
[23] Mathematical Modelling of Rods, Handbook of Numerical Analysis, 4, North-Holland, Amsterdam, 1996
Cité par Sources :
Commentaires - Politique