Comptes Rendus
Bianchi–Euler system for relativistic fluids and Bel–Robinson type energy
Comptes Rendus. Mathématique, Volume 335 (2002) no. 8, pp. 711-716.

We write a first order symmetric hyperbolic system coupling the Riemann tensor with the dynamical acceleration of a prefect relativistic fluid. We determine the associated, coupled, Bel–Robinson type energy, and the integral equality that it satisfies.

On écrit un système symétrique hyperbolique satisfait par le tenseur de Riemann de l'espace temps et l'accélération dynamique d'un fluide parfait relativiste. On détermine l'énergie du type Bel–Robinson correspondante, et l'égalité intégrale qu'elle satisfait.

Received:
Accepted:
Published online:
DOI: 10.1016/S1631-073X(02)02550-5

Yvonne Choquet-Bruhat 1; James W. York 2

1 LPTL, Université Paris 6, 4, 75252, Paris, France
2 Physics Department, Cornell University, Ithaca, NY, 14853-6801, USA
@article{CRMATH_2002__335_8_711_0,
     author = {Yvonne Choquet-Bruhat and James W. York},
     title = {Bianchi{\textendash}Euler system for relativistic fluids and {Bel{\textendash}Robinson} type energy},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {711--716},
     publisher = {Elsevier},
     volume = {335},
     number = {8},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02550-5},
     language = {en},
}
TY  - JOUR
AU  - Yvonne Choquet-Bruhat
AU  - James W. York
TI  - Bianchi–Euler system for relativistic fluids and Bel–Robinson type energy
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 711
EP  - 716
VL  - 335
IS  - 8
PB  - Elsevier
DO  - 10.1016/S1631-073X(02)02550-5
LA  - en
ID  - CRMATH_2002__335_8_711_0
ER  - 
%0 Journal Article
%A Yvonne Choquet-Bruhat
%A James W. York
%T Bianchi–Euler system for relativistic fluids and Bel–Robinson type energy
%J Comptes Rendus. Mathématique
%D 2002
%P 711-716
%V 335
%N 8
%I Elsevier
%R 10.1016/S1631-073X(02)02550-5
%G en
%F CRMATH_2002__335_8_711_0
Yvonne Choquet-Bruhat; James W. York. Bianchi–Euler system for relativistic fluids and Bel–Robinson type energy. Comptes Rendus. Mathématique, Volume 335 (2002) no. 8, pp. 711-716. doi : 10.1016/S1631-073X(02)02550-5. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02550-5/

[1] M. Anile Relativistic Fluids and Magnetofluids, Cambridge University Press, 1982

[2] L. Bel C. R. Acad. Sci. Paris, 246 (1958), pp. 3105-3107

[3] Y. Choquet-Bruhat Comm. Math. Phys, 3 (1966), pp. 334-357

[4] Y. Choquet-Bruhat; J. York Banach Center Publ, 41 (1997) no. 1, pp. 119-131

[5] Y. Choquet-Bruhat; J.W. York Topol. Methods Nonlinear Anal (2001)

[6] H. Friedrich Class. Quantum Grav, 13 (1996), pp. 1451-1459

[7] H. Friedrich Phys. Rev. D, 57 (1998), pp. 2317-2322

[8] K.O. Friedrichs, Fluid and magnetofluids, Colloque CNRS, 1969

[9] Y. Foures (Choquet)-Bruhat Bull. Soc. Math. France, 86 (1958), pp. 155-175

[10] J. Leray Hyperbolic Differential Equations, I.A.S, Princeton, 1953

[11] A. Lichnerowicz Ann. IHES, 10 (1964)

[12] A. Rendall J. Math. Phys, 33 (1992), pp. 1047-1053

[13] T. Ruggeri; A. Strumia Ann. Inst. H. Poincaré, 34 (1981), pp. 65-84

Cited by Sources:

Comments - Policy