[Régions extérieures de l'espace-temps de Kerr perturbé par une non-linéarité vérifiant une décroissance de « peeling »]
On démontre, à l'extérieur de la région d'influence d'une boule de rayon
We prove, outside the influence region of a ball of radius
Accepté le :
Publié le :
Giulio Caciotta 1 ; Francesco Nicolò 1
@article{CRMATH_2010__348_19-20_1123_0, author = {Giulio Caciotta and Francesco Nicol\`o}, title = {External regions of nonlinearly perturbed {Kerr} spacetimes satisfying the peeling decay}, journal = {Comptes Rendus. Math\'ematique}, pages = {1123--1128}, publisher = {Elsevier}, volume = {348}, number = {19-20}, year = {2010}, doi = {10.1016/j.crma.2010.06.009}, language = {en}, }
TY - JOUR AU - Giulio Caciotta AU - Francesco Nicolò TI - External regions of nonlinearly perturbed Kerr spacetimes satisfying the peeling decay JO - Comptes Rendus. Mathématique PY - 2010 SP - 1123 EP - 1128 VL - 348 IS - 19-20 PB - Elsevier DO - 10.1016/j.crma.2010.06.009 LA - en ID - CRMATH_2010__348_19-20_1123_0 ER -
Giulio Caciotta; Francesco Nicolò. External regions of nonlinearly perturbed Kerr spacetimes satisfying the peeling decay. Comptes Rendus. Mathématique, Volume 348 (2010) no. 19-20, pp. 1123-1128. doi : 10.1016/j.crma.2010.06.009. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.06.009/
[1] Decay of the Maxwell field on the Schwarzschild manifold, Journal of Hyperbolic Differential Equations, Volume 5 (2008) no. 4, pp. 807-856
[2] The nonlinear perturbation of the Kerr spacetime in an external region, 2009 | arXiv
[3] The Global Nonlinear Stability of the Minkowski Space, Princeton Mathematical Series, vol. 41, 1993
[4] A proof of the uniform boundedness of solutions to the wave equation on slowly rotating Kerr backgrounds, 2008 | arXiv
[5] The Evolution Problem in General Relativity, Progress in Mathematical Physics, vol. 25, Birkhäuser, 2002
[6] Peeling properties of asymptotically flat solutions to the Einstein vacuum equations, Classical and Quantum Gravity, Volume 20 (2003), pp. 3215-3257
[7] S. Klainerman, Linear stability of black holes – following M. Dafermos and I. Rodnianski, Bourbaki Seminar, 2009.
[8] Polyhomogeneity and zero rest mass fields with applications to Newman–Penrose constants, Classical and Quantum Gravity, Volume 17 (2000), pp. 605-621
[9] The peeling in the “very external region” of nonlinear perturbations of the Kerr spacetime | arXiv
[10] General Relativity, University of Chicago Press, 1984
Cité par Sources :
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier