Comptes Rendus
Mathematical Physics
External regions of nonlinearly perturbed Kerr spacetimes satisfying the peeling decay
[Régions extérieures de l'espace-temps de Kerr perturbé par une non-linéarité vérifiant une décroissance de « peeling »]
Comptes Rendus. Mathématique, Volume 348 (2010) no. 19-20, pp. 1123-1128.

On démontre, à l'extérieur de la région d'influence d'une boule de rayon R0 centée à l'origine de l'hypersurface initiale Σ0, l'existence de solutions globales près de l'espace-temps de Kerr pourvu que les données initiales soient suffisamment proches de celles de Kerr. Cette région extérieure est la partie « éloignée » de la région extérieure de l'espace-temps de Kerr perturbée. De plus si on suppose que les corrections de la métrique de Kerr décroissent suffisamment vite, o(r3), on démontre que la décroissance vers zéro des composantes du tenseur de Riemann est en accord avec la « conjecture de peeling ».

We prove, outside the influence region of a ball of radius R0 centered at the origin of the initial data hypersurface, Σ0, the existence of global solutions near to the Kerr spacetime, provided that the initial data are sufficiently near to those of Kerr. This external region is the “far” part of the outer region of the perturbed Kerr spacetime. Moreover, if we assume that the corrections to the Kerr metric decay sufficiently fast, o(r3), we prove that the various null components of the Riemann tensor decay in agreement with the “Peeling conjecture”.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2010.06.009

Giulio Caciotta 1 ; Francesco Nicolò 1

1 Dipartimento di Matematica, Università degli Studi di Roma “Tor Vergata”, Via della Ricerca Scientifica, 00133 Roma, Italy
@article{CRMATH_2010__348_19-20_1123_0,
     author = {Giulio Caciotta and Francesco Nicol\`o},
     title = {External regions of nonlinearly perturbed {Kerr} spacetimes satisfying the peeling decay},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1123--1128},
     publisher = {Elsevier},
     volume = {348},
     number = {19-20},
     year = {2010},
     doi = {10.1016/j.crma.2010.06.009},
     language = {en},
}
TY  - JOUR
AU  - Giulio Caciotta
AU  - Francesco Nicolò
TI  - External regions of nonlinearly perturbed Kerr spacetimes satisfying the peeling decay
JO  - Comptes Rendus. Mathématique
PY  - 2010
SP  - 1123
EP  - 1128
VL  - 348
IS  - 19-20
PB  - Elsevier
DO  - 10.1016/j.crma.2010.06.009
LA  - en
ID  - CRMATH_2010__348_19-20_1123_0
ER  - 
%0 Journal Article
%A Giulio Caciotta
%A Francesco Nicolò
%T External regions of nonlinearly perturbed Kerr spacetimes satisfying the peeling decay
%J Comptes Rendus. Mathématique
%D 2010
%P 1123-1128
%V 348
%N 19-20
%I Elsevier
%R 10.1016/j.crma.2010.06.009
%G en
%F CRMATH_2010__348_19-20_1123_0
Giulio Caciotta; Francesco Nicolò. External regions of nonlinearly perturbed Kerr spacetimes satisfying the peeling decay. Comptes Rendus. Mathématique, Volume 348 (2010) no. 19-20, pp. 1123-1128. doi : 10.1016/j.crma.2010.06.009. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.06.009/

[1] P. Blue Decay of the Maxwell field on the Schwarzschild manifold, Journal of Hyperbolic Differential Equations, Volume 5 (2008) no. 4, pp. 807-856

[2] G. Caciotta; F. Nicolò The nonlinear perturbation of the Kerr spacetime in an external region, 2009 | arXiv

[3] D. Christodoulou; S. Klainerman The Global Nonlinear Stability of the Minkowski Space, Princeton Mathematical Series, vol. 41, 1993

[4] M. Dafermos; I. Rodnianski A proof of the uniform boundedness of solutions to the wave equation on slowly rotating Kerr backgrounds, 2008 | arXiv

[5] S. Klainerman; F. Nicolò The Evolution Problem in General Relativity, Progress in Mathematical Physics, vol. 25, Birkhäuser, 2002

[6] S. Klainerman; F. Nicolò Peeling properties of asymptotically flat solutions to the Einstein vacuum equations, Classical and Quantum Gravity, Volume 20 (2003), pp. 3215-3257

[7] S. Klainerman, Linear stability of black holes – following M. Dafermos and I. Rodnianski, Bourbaki Seminar, 2009.

[8] J.A.V. Kroon Polyhomogeneity and zero rest mass fields with applications to Newman–Penrose constants, Classical and Quantum Gravity, Volume 17 (2000), pp. 605-621

[9] F. Nicolò The peeling in the “very external region” of nonlinear perturbations of the Kerr spacetime | arXiv

[10] R.M. Wald General Relativity, University of Chicago Press, 1984

Cité par Sources :

Commentaires - Politique