Comptes Rendus
Classes de symétrie des solides piézoélectriques
Comptes Rendus. Mathématique, Volume 335 (2002) no. 10, pp. 847-852.

On applique ici les techniques de décomposition harmonique et de Cartan à la classification des groupes de symétries des solides piézoélectriques. Nous montrons en particulier qu'il faut réduire de 19 à 17 le nombre des classes de symétries correspondant au phénomène piézoélectrique.

We apply here the harmonic and Cartan decomposition techniques to piezoelectric material symmetries classification. We show in particular that we shall reduce from 19 to 17 the number of symmetry classes corresponding to the piezoelectric phenomenon.

Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(02)02573-6

Giuseppe Geymonat 1 ; Thibaut Weller 1

1 Laboratoire de mécanique et génie civil, UMR 5508 CNRS-UM II, Université Montpellier II, c.c. 48, place Eugène Bataillon, 34095 Montpellier cedex 05, France
@article{CRMATH_2002__335_10_847_0,
     author = {Giuseppe Geymonat and Thibaut Weller},
     title = {Classes de sym\'etrie des solides pi\'ezo\'electriques},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {847--852},
     publisher = {Elsevier},
     volume = {335},
     number = {10},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02573-6},
     language = {fr},
}
TY  - JOUR
AU  - Giuseppe Geymonat
AU  - Thibaut Weller
TI  - Classes de symétrie des solides piézoélectriques
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 847
EP  - 852
VL  - 335
IS  - 10
PB  - Elsevier
DO  - 10.1016/S1631-073X(02)02573-6
LA  - fr
ID  - CRMATH_2002__335_10_847_0
ER  - 
%0 Journal Article
%A Giuseppe Geymonat
%A Thibaut Weller
%T Classes de symétrie des solides piézoélectriques
%J Comptes Rendus. Mathématique
%D 2002
%P 847-852
%V 335
%N 10
%I Elsevier
%R 10.1016/S1631-073X(02)02573-6
%G fr
%F CRMATH_2002__335_10_847_0
Giuseppe Geymonat; Thibaut Weller. Classes de symétrie des solides piézoélectriques. Comptes Rendus. Mathématique, Volume 335 (2002) no. 10, pp. 847-852. doi : 10.1016/S1631-073X(02)02573-6. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02573-6/

[1] Y. Berthaud; M. François; G. Geymonat Determination of the symetries of an experimentally determined stiffness tensor: application to acoustic measurements, Int. J. Solids Structures, Volume 35 (1998) no. 31–32, pp. 4091-4106

[2] S. Forte; M. Vianello Symmetry classes for elasticity tensors, J. Elasticity, Volume 43 (1996), pp. 81-108

[3] S. Forte; M. Vianello Symmetry classes and harmonic decomposition for photoelasticity tensors, Int. J. Engrg. Sci, Volume 35 (1997) no. 14, pp. 1317-1326

[4] M. Golubitsky; D.G. Schaeffer Singularities and Groups in Bifurcation Theory, Vol. I, Springer, 1985

[5] L. Landau; E. Lifchitz Electrodynamique des Milieux Continus, Mir, 1969

[6] D. Royer; E. Dieulesaint Ondes élastiques dans les solides, Tome I, Masson, 1996

[7] J.A. Schouten Tensor Analysis for Physicists, Clarendon Press, 1954

[8] A.J.M. Spencer A note on the decomposition of tensors into traceless symmetric tensors, Int. J. Engrg. Sci, Volume 8 (1970), pp. 475-481

[9] Q.-S. Zheng; J.P. Boehler The description, classification and reality of material and physical symmetries, Acta Mech, Volume 102 (1994), pp. 73-89

  • B. Desmorat; M. Olive; N. Auffray; R. Desmorat; B. Kolev Computation of minimal covariants bases for 2D coupled constitutive laws, International Journal of Engineering Science, Volume 191 (2023), p. 39 (Id/No 103880) | DOI:10.1016/j.ijengsci.2023.103880 | Zbl:1549.74100
  • Guangjin Mou; Boris Desmorat; Robin Turlin; Nicolas Auffray On exotic linear materials: 2D elasticity and beyond, International Journal of Solids and Structures, Volume 264 (2023), p. 112103 | DOI:10.1016/j.ijsolstr.2022.112103
  • Giuseppe Gaeta; Epifanio G. Virga A review on octupolar tensors, Journal of Physics A: Mathematical and Theoretical, Volume 56 (2023) no. 36, p. 70 (Id/No 363001) | DOI:10.1088/1751-8121/ace712 | Zbl:1531.81185
  • Perla Azzi; Rodrigue Desmorat; Boris Kolev; Fabien Priziac Distance to a constitutive tensor isotropy stratum by the Lasserre polynomial optimization method, Mathematics and Mechanics of Complex Systems, Volume 11 (2023) no. 3, pp. 393-428 | DOI:10.2140/memocs.2023.11.393 | Zbl:1527.90149
  • Yakov Itin; Shulamit Reches Decomposition of third-order constitutive tensors, Mathematics and Mechanics of Solids, Volume 27 (2022) no. 2, pp. 222-249 | DOI:10.1177/10812865211016530 | Zbl:7590421
  • Huilong Ren; Xiaoying Zhuang; Nguyen-Thoi Trung; Timon Rabczuk A nonlocal operator method for finite deformation higher-order gradient elasticity, Computer Methods in Applied Mechanics and Engineering, Volume 384 (2021), p. 28 (Id/No 113963) | DOI:10.1016/j.cma.2021.113963 | Zbl:1506.74045
  • Marc Olive; Nicolas Auffray Symmetry classes in piezoelectricity from second-order symmetries, Mathematics and Mechanics of Complex Systems, Volume 9 (2021) no. 1, pp. 77-105 | DOI:10.2140/memocs.2021.9.77 | Zbl:1508.74015
  • M. Olive; B. Desmorat; B. Kolev; R. Desmorat On the determination of plane and axial symmetries in linear elasticity and piezo-electricity, Journal of Elasticity, Volume 141 (2020) no. 1, pp. 147-163 | DOI:10.1007/s10659-020-09778-5 | Zbl:1448.74017
  • M. Olive; B. Desmorat; B. Kolev; R. Desmorat Reduced algebraic conditions for plane or axial tensorial symmetries, Mathematics and Mechanics of Solids, Volume 25 (2020) no. 12, pp. 2155-2177 | DOI:10.1177/1081286520920691 | Zbl:1482.74050
  • Marc Olive Effective computation of SO(3) and O(3) linear representation symmetry classes, Mathematics and Mechanics of Complex Systems, Volume 7 (2019) no. 3, p. 203 | DOI:10.2140/memocs.2019.7.203
  • M. Olive; B. Kolev; B. Desmorat; R. Desmorat Harmonic factorization and reconstruction of the elasticity tensor, Journal of Elasticity, Volume 132 (2018) no. 1, pp. 67-101 | DOI:10.1007/s10659-017-9657-y | Zbl:1393.74025
  • Anatoliy Malyarenko; Martin Ostoja-Starzewski Random Fields Related to the Symmetry Classes of Second-Order Symmetric Tensors, Stochastic Processes and Applications, Volume 271 (2018), p. 173 | DOI:10.1007/978-3-030-02825-1_10
  • Anatoliy Malyarenko, Volume 1798 (2017), p. 020095 | DOI:10.1063/1.4972687
  • N. Auffray; B. Kolev; M. Olive Handbook of bi-dimensional tensors: part I: Harmonic decomposition and symmetry classes, Mathematics and Mechanics of Solids, Volume 22 (2017) no. 9, pp. 1847-1865 | DOI:10.1177/1081286516649017 | Zbl:1391.74020
  • Christian Licht; Thibaut Weller Mathematical Modelings of Some Smart Materials and Structures, Applied Mechanics and Materials, Volume 749 (2015), p. 13 | DOI:10.4028/www.scientific.net/amm.749.13
  • M. Olive; N. Auffray Symmetry classes for odd-order tensors, ZAMM. Zeitschrift für Angewandte Mathematik und Mechanik, Volume 94 (2014) no. 5, pp. 421-447 | DOI:10.1002/zamm.201200225 | Zbl:1302.15030
  • Marc Olive; Nicolas Auffray Symmetry classes for even-order tensors, Mathematics and Mechanics of Complex Systems, Volume 1 (2013) no. 2, p. 177 | DOI:10.2140/memocs.2013.1.177
  • W.-N. Zou; C.-X. Tang; E. Pan Symmetry types of the piezoelectric tensor and their identification, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Volume 469 (2013) no. 2155, p. 20120755 | DOI:10.1098/rspa.2012.0755
  • Sidney B. Lang Guide to the Literature of Piezoelectricity and Pyroelectricity. 23, Ferroelectrics, Volume 321 (2005) no. 1, p. 91 | DOI:10.1080/00150190500259707

Cité par 19 documents. Sources : Crossref, zbMATH

Commentaires - Politique