[Propagation du chaos pour un système de gaz sans pression avec viscosité]
Dans cette Note on utilise les idées de A.S. Sznitman dans son étude de la propagation du chaos probabiliste pour l'équation de Burgers, et on obtient l'existence et l'unicité d'une solution faible au système de gaz sans pression avec viscosité cité dans l'abstract.
We use A.S. Sznitman ideas of probabilistic phenomenon of propagation of chaos for Burgers equation, and we derive the existence and uniqueness of a weak solution of the following system of pressureless gas equations with viscosity:
Accepté le :
Publié le :
Azzouz Dermoune 1
@article{CRMATH_2002__335_11_935_0, author = {Azzouz Dermoune}, title = {Propagation of chaos for pressureless gas equations with viscosity}, journal = {Comptes Rendus. Math\'ematique}, pages = {935--940}, publisher = {Elsevier}, volume = {335}, number = {11}, year = {2002}, doi = {10.1016/S1631-073X(02)02602-X}, language = {en}, }
Azzouz Dermoune. Propagation of chaos for pressureless gas equations with viscosity. Comptes Rendus. Mathématique, Volume 335 (2002) no. 11, pp. 935-940. doi : 10.1016/S1631-073X(02)02602-X. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02602-X/
[1] Semi-martingale inequalities via the Garsia–Rodemich–Rumsey lemma, and applications to local times, J. Funct. Anal., Volume 49 (1982), pp. 198-229
[2] Global solution of pressureless gas equation with viscosity, Phys. D, Volume 163 (2002), pp. 184-190
[3] Pressureless gas equations with viscosity and nonlinear diffusion, C. R. Acad. Sci. Paris, Série I, Volume 332 (2001), pp. 741-750
[4] A law of large numbers for moderately interacting diffusion processes, Z. Wahrscheinlichkeitstheor. Verw. Gebiete, Volume 69 (1985), pp. 279-322
[5] Mutidimensional Diffusion Processes, Springer, New York, 1979
[6] A propagation of chaos results for Burgers' equation, Probab. Theory Related. Fields, Volume 71 (1986), pp. 581-613
[7] A.S. Sznitman, Topics in propagation of chaos, École d'Été de Probabilités de Saint-Flours XIX, 1989
[8] Equations de type Boltzmann spatialement homogènes, Z. Wahrscheinlichkeitstheor. Verw. Gebiete, Volume 66 (1984), pp. 559-592
Cité par Sources :
Commentaires - Politique