We study the decay of the travelling waves of finite energy in the Gross–Pitaevskii equation in dimension greater than three and prove their uniform convergence to a constant of modulus one at infinity.
Nous étudions la limite à l'infini des ondes progressives d'énergie finie dans l'équation de Gross–Pitaevskii en dimension supérieure ou égale à trois et nous montrons leur convergence uniforme vers une constante de module un.
Accepted:
Published online:
Philippe Gravejat 1
@article{CRMATH_2003__336_2_147_0, author = {Philippe Gravejat}, title = {Limit at infinity for travelling waves in the {Gross{\textendash}Pitaevskii} equation}, journal = {Comptes Rendus. Math\'ematique}, pages = {147--152}, publisher = {Elsevier}, volume = {336}, number = {2}, year = {2003}, doi = {10.1016/S1631-073X(03)00007-4}, language = {en}, }
Philippe Gravejat. Limit at infinity for travelling waves in the Gross–Pitaevskii equation. Comptes Rendus. Mathématique, Volume 336 (2003) no. 2, pp. 147-152. doi : 10.1016/S1631-073X(03)00007-4. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00007-4/
[1] F. Béthuel, G. Orlandi, D. Smets, Vortex rings for the Gross–Pitaevskii equation, Preprint
[2] Travelling waves for the Gross–Pitaevskii equation I, Ann. Inst. H. Poincaré Phys. Théor., Volume 70 (1999) no. 2, pp. 147-238
[3] F. Béthuel, J.C. Saut, Travelling waves for the Gross–Pitaevskii equation II, in preparation
[4] Sobolev embeddings into BMO, VMO and L∞, Ark. Mat., Volume 36 (1998), pp. 317-340
[5] A. Farina, From Ginzburg–Landau to Gross–Pitaevskii, Preprint
[6] P. Gravejat, Decay for travelling waves in the Gross–Pitaevskii equation, in preparation
[7] Motions in a Bose condensate IV, Axisymmetric solitary waves, J. Phys. A, Volume 15 (1982), pp. 2599-2619
[8] Multipliers of Fourier integrals, Proc. Steklov Inst. Math., Volume 89 (1967), pp. 269-290
[9] Analyticity and decay properties of the solitary waves to the Benney–Luke equation, Differential Integral Equations, Volume 14 (2001) no. 3, pp. 361-384
Cited by Sources:
Comments - Policy