Comptes Rendus
Partial Differential Equations
Limit at infinity for travelling waves in the Gross–Pitaevskii equation
Comptes Rendus. Mathématique, Volume 336 (2003) no. 2, pp. 147-152.

We study the decay of the travelling waves of finite energy in the Gross–Pitaevskii equation in dimension greater than three and prove their uniform convergence to a constant of modulus one at infinity.

Nous étudions la limite à l'infini des ondes progressives d'énergie finie dans l'équation de Gross–Pitaevskii en dimension supérieure ou égale à trois et nous montrons leur convergence uniforme vers une constante de module un.

Received:
Accepted:
Published online:
DOI: 10.1016/S1631-073X(03)00007-4

Philippe Gravejat 1

1 Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie (Paris-6), BC 187, 4, place Jussieu, 75252 Paris cedex 05, France
@article{CRMATH_2003__336_2_147_0,
     author = {Philippe Gravejat},
     title = {Limit at infinity for travelling waves in the {Gross{\textendash}Pitaevskii} equation},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {147--152},
     publisher = {Elsevier},
     volume = {336},
     number = {2},
     year = {2003},
     doi = {10.1016/S1631-073X(03)00007-4},
     language = {en},
}
TY  - JOUR
AU  - Philippe Gravejat
TI  - Limit at infinity for travelling waves in the Gross–Pitaevskii equation
JO  - Comptes Rendus. Mathématique
PY  - 2003
SP  - 147
EP  - 152
VL  - 336
IS  - 2
PB  - Elsevier
DO  - 10.1016/S1631-073X(03)00007-4
LA  - en
ID  - CRMATH_2003__336_2_147_0
ER  - 
%0 Journal Article
%A Philippe Gravejat
%T Limit at infinity for travelling waves in the Gross–Pitaevskii equation
%J Comptes Rendus. Mathématique
%D 2003
%P 147-152
%V 336
%N 2
%I Elsevier
%R 10.1016/S1631-073X(03)00007-4
%G en
%F CRMATH_2003__336_2_147_0
Philippe Gravejat. Limit at infinity for travelling waves in the Gross–Pitaevskii equation. Comptes Rendus. Mathématique, Volume 336 (2003) no. 2, pp. 147-152. doi : 10.1016/S1631-073X(03)00007-4. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00007-4/

[1] F. Béthuel, G. Orlandi, D. Smets, Vortex rings for the Gross–Pitaevskii equation, Preprint

[2] F. Béthuel; J.C. Saut Travelling waves for the Gross–Pitaevskii equation I, Ann. Inst. H. Poincaré Phys. Théor., Volume 70 (1999) no. 2, pp. 147-238

[3] F. Béthuel, J.C. Saut, Travelling waves for the Gross–Pitaevskii equation II, in preparation

[4] A. Cianchi; L. Pick Sobolev embeddings into BMO, VMO and L, Ark. Mat., Volume 36 (1998), pp. 317-340

[5] A. Farina, From Ginzburg–Landau to Gross–Pitaevskii, Preprint

[6] P. Gravejat, Decay for travelling waves in the Gross–Pitaevskii equation, in preparation

[7] C.A. Jones; P.H. Roberts Motions in a Bose condensate IV, Axisymmetric solitary waves, J. Phys. A, Volume 15 (1982), pp. 2599-2619

[8] P.I. Lizorkin Multipliers of Fourier integrals, Proc. Steklov Inst. Math., Volume 89 (1967), pp. 269-290

[9] M. Maris Analyticity and decay properties of the solitary waves to the Benney–Luke equation, Differential Integral Equations, Volume 14 (2001) no. 3, pp. 361-384

Cited by Sources:

Comments - Policy