Comptes Rendus
Partial Differential Equations
On the fundamental state for a Schrödinger operator with magnetic field in a domain with corners
[Etat fondamental de l'opérateur de Schrödinger avec champ magnétique dans un domaine à coin]
Comptes Rendus. Mathématique, Volume 336 (2003) no. 2, pp. 135-140.

Nous démontrons que la réalisation de Neumann de l'opérateur de Schrödinger avec un champ magnétique constant sur un secteur Ωα2 d'angle α∈]0,π] admet au moins une valeur propre, en dessous du spectre essentiel, quand l'angle est suffisamment petit. Nous établissons un développement limité de la plus petite valeur propre pour α proche de 0. Cette étude permet de donner des estimations du bas du spectre dans le cas semi-classique pour des domaines à coin.

We show that the Neumann realization for the Schrödinger operator with a constant magnetic field in a sector has at least one eigenvalue below the essential spectrum, when the angle is sufficiently small. We establish the complete asymptotics of the lowest eigenvalue as the angle tends to 0. This study is applied to the analysis of the bottom of the spectrum in the semi-classical case for domains with edges.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(03)00008-6

Virginie Bonnaillie 1

1 Département de mathématique, UMR CNRS 8625, bât. 425, Université Paris-Sud, 91405 Orsay cedex, France
@article{CRMATH_2003__336_2_135_0,
     author = {Virginie Bonnaillie},
     title = {On the fundamental state for a {Schr\"odinger} operator with magnetic field in a domain with corners},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {135--140},
     publisher = {Elsevier},
     volume = {336},
     number = {2},
     year = {2003},
     doi = {10.1016/S1631-073X(03)00008-6},
     language = {en},
}
TY  - JOUR
AU  - Virginie Bonnaillie
TI  - On the fundamental state for a Schrödinger operator with magnetic field in a domain with corners
JO  - Comptes Rendus. Mathématique
PY  - 2003
SP  - 135
EP  - 140
VL  - 336
IS  - 2
PB  - Elsevier
DO  - 10.1016/S1631-073X(03)00008-6
LA  - en
ID  - CRMATH_2003__336_2_135_0
ER  - 
%0 Journal Article
%A Virginie Bonnaillie
%T On the fundamental state for a Schrödinger operator with magnetic field in a domain with corners
%J Comptes Rendus. Mathématique
%D 2003
%P 135-140
%V 336
%N 2
%I Elsevier
%R 10.1016/S1631-073X(03)00008-6
%G en
%F CRMATH_2003__336_2_135_0
Virginie Bonnaillie. On the fundamental state for a Schrödinger operator with magnetic field in a domain with corners. Comptes Rendus. Mathématique, Volume 336 (2003) no. 2, pp. 135-140. doi : 10.1016/S1631-073X(03)00008-6. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00008-6/

[1] S. Agmon Lectures on Exponential Decay of Solutions of Second Order Elliptic Equations, Math. Notes, Princeton University Press, 1982

[2] A. Bernoff; P. Sternberg Onset of superconductivity in decreasing fields for general domains, J. Math. Phys., Volume 39 (1998) no. 3, pp. 1272-1284

[3] P. Bolley; J. Camus Sur une classe d'opérateurs elliptiques et dégénérés à une variable, J. Math. Pures Appl., Volume 51 (1972), pp. 429-463

[4] V. Bonnaillie, On the fundamental state for a Schrödinger operator with magnetic field in domains with corners, Preprint, Mittag–Leffler Institute, January 2003

[5] F. Brosens; J.T. Devreese; V.M. Fomin; V.V. Moshchalkov Superconductivity in a wedge: analytical variational results, Solid State Comm., Volume 111 (1999) no. 12, pp. 565-569

[6] B. Helffer; A. Morame Magnetic bottles in connection with superconductivity, J. Funct. Anal., Volume 185 (2001), pp. 604-680

[7] H.-T. Jadallah, The Onset of superconductivity in a domain with a corner, Ph.D. thesis, Indiana University, 2001

[8] X.-B. Pan Upper Critical Field for superconductors with edges and corners, Calc. Var. Partial Differential Equations, Volume 14 (2002), pp. 447-482

[9] A. Persson Bounds for the discrete part of the spectrum of a semi-bounded Schrödinger operator, Math. Scand., Volume 8 (1960), pp. 143-153

[10] M. del Pino; P.L. Felmer; P. Sternberg Boundary concentration for eigenvalue problems related to the onset of superconductivity, Comm. Math. Phys., Volume 210 (2000), pp. 413-446

[11] V.A. Schweigert; F.M. Peeters Influence of the confinement geometry on surface superconductivity, Phys. Rev. B, Volume 60 (1999) no. 5, pp. 3084-3087

  • A. A. Kopasov; D. A. Savinov; A. S. Mel’nikov Localized Superconductivity in Systems with Inhomogeneous Mass of Cooper Pairs, Radiophysics and Quantum Electronics, Volume 59 (2017) no. 11, p. 911 | DOI:10.1007/s11141-017-9761-7
  • A. Yu. Aladyshkin; A. S. Mel'nikov; I. M. Nefedov; D. A. Savinov; M. A. Silaev; I. A. Shereshevskii Hybridization and interference effects for localized superconducting states in strong magnetic field, Physical Review B, Volume 85 (2012) no. 18 | DOI:10.1103/physrevb.85.184528
  • Virginie Bonnaillie Noël Schrödinger operator with magnetic field in domain with corners, Journées équations aux dérivées partielles (2008), p. 1 | DOI:10.5802/jedp.15
  • F. Brosens; V.M. Fomin; J.T. Devreese; V.V. Moshchalkov Superconductivity in a wedge: Analytical variational results II, Solid State Communications, Volume 144 (2007) no. 10-11, p. 494 | DOI:10.1016/j.ssc.2007.08.045
  • S. Fournais; B. Helffer Energy asymptotics for type II superconductors, Calculus of Variations and Partial Differential Equations, Volume 24 (2005) no. 3, pp. 341-376 | DOI:10.1007/s00526-005-0333-x | Zbl:1160.82365
  • Virginie Bonnaillie-Noël A posteriori error estimator for the eigenvalue problem associated to the Schrödinger operator with magnetic field, Numerische Mathematik, Volume 99 (2004) no. 2, pp. 325-348 | DOI:10.1007/s00211-004-0556-3 | Zbl:1061.65114
  • François Alouges; Virginie Bonnaillie Analyse numérique de la supraconductivité (Numerical analysis of superconductivity)., Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 337 (2003) no. 8, pp. 543-548 | DOI:10.1016/j.crma.2003.09.007 | Zbl:1035.65121

Cité par 7 documents. Sources : Crossref, zbMATH

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: