On étend les lois du logarithme itéré de Bovier–Picco–Zhang pour les séries géométriques aléatoires pondérées, et précisons la vitesse de convergence vers l'ensemble limite.
We extend the Bovier–Picco–Zhang laws of the iterated logarithm for geometrically weighted random series, and give the rate of convergence towards the limit set.
Accepté le :
Publié le :
George Stoica 1
@article{CRMATH_2003__336_2_191_0, author = {George Stoica}, title = {Loi limite et vitesse de convergence pour des s\'eries g\'eom\'etriques al\'eatoires pond\'er\'ees}, journal = {Comptes Rendus. Math\'ematique}, pages = {191--193}, publisher = {Elsevier}, volume = {336}, number = {2}, year = {2003}, doi = {10.1016/S1631-073X(03)00016-5}, language = {fr}, }
George Stoica. Loi limite et vitesse de convergence pour des séries géométriques aléatoires pondérées. Comptes Rendus. Mathématique, Volume 336 (2003) no. 2, pp. 191-193. doi : 10.1016/S1631-073X(03)00016-5. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00016-5/
[1] Weak convergence of the row sums of a triangular array of empirical processes (E. Eberlein; M. Hahn; M. Talagrand, eds.), High Dimensional Probability, Progr. Probab., 43, Birkhäuser, 1998, pp. 1-25
[2] On the law of the iterated logarithm for canonical U-statistics and processes, Stochastic Process. Appl., Volume 58 (1995), pp. 217-245
[3] A law of the iterated logarithm for random geometric series, Ann. Probab., Volume 21 (1993), pp. 168-184
[4] Laws of large numbers and continuity of processes (E. Eberlein; M. Hahn; M. Talagrand, eds.), High Dimensional Probability, Progr. Probab., 43, Birkhäuser, 1998, pp. 145-149
[5] Moderate deviations of dependent random variables related to CLT, Ann. Probab., Volume 23 (1995), pp. 420-445
[6] Strong approximation theorems for geometrically weighted series and their applications, Ann. Probab., Volume 25 (1997), pp. 1621-1635
Cité par Sources :
Commentaires - Politique