Nous montrons comment donner à la théorie des hérissons (c'est-à-dire, des différences géométriques de corps convexes de
We show how it is possible to give a general character to the theory of hedgehogs (i.e., of geometric differences of convex bodies of
Accepté le :
Publié le :
Yves Martinez-Maure 1
@article{CRMATH_2003__336_3_241_0, author = {Yves Martinez-Maure}, title = {Th\'eorie des h\'erissons et polytopes}, journal = {Comptes Rendus. Math\'ematique}, pages = {241--244}, publisher = {Elsevier}, volume = {336}, number = {3}, year = {2003}, doi = {10.1016/S1631-073X(03)00020-7}, language = {fr}, }
Yves Martinez-Maure. Théorie des hérissons et polytopes. Comptes Rendus. Mathématique, Volume 336 (2003) no. 3, pp. 241-244. doi : 10.1016/S1631-073X(03)00020-7. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00020-7/
[1] On the regularity of the n-Dimensional Minkowski Problem, Comm. Pure Appl. Math., Volume 29 (1976), pp. 495-516
[2] Über den Brunn–Minkowskischen Satz, Math. Z., Volume 42 (1937), pp. 238-254
[3] Hérissons et multihérissons (enveloppes paramétrées par leur application de Gauss), Singularities, Warsaw, 1985, Banach Center Publ., 20, PWN, Warsaw, 1988, pp. 245-253
[4] Hedgehogs and zonoids, Adv. Math., Volume 158 (2001), pp. 1-17
[5] Contre-exemple à une caractérisation conjecturée de la sphère, C. R. Acad. Sci. Paris Sér. I, Volume 332 (2001), pp. 41-44
[6] Y. Martinez-Maure, La théorie des hérissons (différences géométriques de corps convexes) et ses applications, Habilitation à Diriger des Recherches, Univ. Paris 7, 2001
[7] Y. Martinez-Maure, Les multihérissons et le théorème de Sturm–Hurwitz, Arch. Math., à paraître
[8] G. Panina, Virtual polytopes and some classical problems of geometry, St. Petersburg Math. J., to appear
[9] Extrinsic Geometry of Convex Surfaces, Transl. Math. Monographs, 35, American Mathematical Society, Providence, RI, 1969 (Original russe)
- The Gauss-Bonnet theorem for coherent tangent bundles over surfaces with boundary and its applications, The Journal of Geometric Analysis, Volume 30 (2020) no. 3, pp. 3243-3274 | DOI:10.1007/s12220-019-00197-0 | Zbl:1457.57040
- The typical irregularity of virtual convex bodies, Journal of Convex Analysis, Volume 25 (2018) no. 1, pp. 103-118 | Zbl:1390.52011
- A stability estimate for the Aleksandrov-Fenchel inequality under regularity assumptions, Monatshefte für Mathematik, Volume 182 (2017) no. 1, pp. 65-76 | DOI:10.1007/s00605-015-0865-x | Zbl:1367.52004
- Hedgehog theory via Euler calculus, Beiträge zur Algebra und Geometrie, Volume 56 (2015) no. 2, pp. 397-421 | DOI:10.1007/s13366-014-0196-4 | Zbl:1335.52020
- Virtual polytopes, Russian Mathematical Surveys, Volume 70 (2015) no. 6, p. 1105 | DOI:10.1070/rm2015v070n06abeh004975
- Виртуальные многогранники, Успехи математических наук, Volume 70 (2015) no. 6(426), p. 139 | DOI:10.4213/rm9639
- Uniqueness results for the Minkowski problem extended to hedgehogs, Central European Journal of Mathematics, Volume 10 (2012) no. 2, pp. 440-450 | DOI:10.2478/s11533-011-0134-8 | Zbl:1239.35005
- A new example of a hyperbolic virtual polytope, Journal of Mathematical Sciences (New York), Volume 175 (2011) no. 5, pp. 509-516 | DOI:10.1007/s10958-011-0360-4 | Zbl:1282.52010
- Pointed spherical tilings and hyperbolic virtual polytopes, Journal of Mathematical Sciences (New York), Volume 175 (2011) no. 5, pp. 591-599 | DOI:10.1007/s10958-011-0374-y | Zbl:1282.52011
- New notion of index for hedgehogs of
and applications, European Journal of Combinatorics, Volume 31 (2010) no. 4, pp. 1037-1049 | DOI:10.1016/j.ejc.2009.11.015 | Zbl:1196.52005 - Isotopy problems for saddle surfaces, European Journal of Combinatorics, Volume 31 (2010) no. 4, pp. 1160-1170 | DOI:10.1016/j.ejc.2009.10.002 | Zbl:1213.52002
- An illustrated theory of hyperbolic virtual polytopes, Central European Journal of Mathematics, Volume 6 (2008) no. 2, pp. 204-217 | DOI:10.2478/s11533-008-0020-1 | Zbl:1145.52004
- Geometric Study of Minkowski Differences of Plane Convex Bodies, Canadian Journal of Mathematics, Volume 58 (2006) no. 3, p. 600 | DOI:10.4153/cjm-2006-025-x
- On hyperbolic virtual polytopes and hyperbolic fans, Central European Journal of Mathematics, Volume 4 (2006) no. 2, pp. 270-293 | DOI:10.2478/s11533-006-0006-9 | Zbl:1107.52002
Cité par 14 documents. Sources : Crossref, zbMATH
Commentaires - Politique