Comptes Rendus
Partial Differential Equations
Large time behaviour of solutions of the Swift–Hohenberg equation
[Comportement des solutions de l'équation de Swift–Hohenberg en grand temps]
Comptes Rendus. Mathématique, Volume 336 (2003) no. 3, pp. 225-230.

Nous étudions les limites des profiles v des solutions de l'équation Swift–Hohenberg dans une domaine de dimension un (0,L), pour différents choix de L. Nous identifions les valeurs de L pour lesquelles v=0 et nous derivons des estimations pour la taille et la forme quand v minimise une fonctionnelle associée.

We study the limiting profiles v of solutions of the Swift–Hohenberg equation on a one-dimensional domain (0,L) for different values of L. We identify those values of L for which v=0, and discuss the size and the shape of v when it is nontrivial and a global minimiser of an associated energy functional.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(03)00021-9

Lambertus A. Peletier 1 ; Vivi Rottschäfer 2

1 Mathematical Institute, Leiden University, PB 9512, 2300 RA Leiden & Centrum voor Wiskunde en Informatica, PB 94079, 1090 GB Amsterdam, The Netherlands
2 Mathematical Institute, Leiden University, PB 9512, 2300 RA Leiden, The Netherlands
@article{CRMATH_2003__336_3_225_0,
     author = {Lambertus A. Peletier and Vivi Rottsch\"afer},
     title = {Large time behaviour of solutions of the {Swift{\textendash}Hohenberg} equation},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {225--230},
     publisher = {Elsevier},
     volume = {336},
     number = {3},
     year = {2003},
     doi = {10.1016/S1631-073X(03)00021-9},
     language = {en},
}
TY  - JOUR
AU  - Lambertus A. Peletier
AU  - Vivi Rottschäfer
TI  - Large time behaviour of solutions of the Swift–Hohenberg equation
JO  - Comptes Rendus. Mathématique
PY  - 2003
SP  - 225
EP  - 230
VL  - 336
IS  - 3
PB  - Elsevier
DO  - 10.1016/S1631-073X(03)00021-9
LA  - en
ID  - CRMATH_2003__336_3_225_0
ER  - 
%0 Journal Article
%A Lambertus A. Peletier
%A Vivi Rottschäfer
%T Large time behaviour of solutions of the Swift–Hohenberg equation
%J Comptes Rendus. Mathématique
%D 2003
%P 225-230
%V 336
%N 3
%I Elsevier
%R 10.1016/S1631-073X(03)00021-9
%G en
%F CRMATH_2003__336_3_225_0
Lambertus A. Peletier; Vivi Rottschäfer. Large time behaviour of solutions of the Swift–Hohenberg equation. Comptes Rendus. Mathématique, Volume 336 (2003) no. 3, pp. 225-230. doi : 10.1016/S1631-073X(03)00021-9. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00021-9/

[1] E. Bodenschatz; W. Pesch; G. Ahlers Recent developments in Rayleigh–Bénard convection, Ann. Rev. Fluid Mech., Volume 32 (2000), pp. 709-778

[2] P. Collet; J.P. Eckmann Instabilities and Fronts in Extended Systems, Princeton Ser. Phys., Princeton University Press, 1990

[3] M.C. Cross; P.C. Hohenberg Pattern formation outside of equilibrium, Rev. Mod. Phys., Volume 65 (1993), pp. 851-1112

[4] J.K. Hale Asymptotic Behavior of Dissipative Systems, Math. Surveys Monographs, 25, American Mathematical Society, Providence, RI, 1988

[5] P.C. Hohenberg; J.B. Swift Effects of additive noise at the onset of Rayleigh–Bénard convection, Phys. Rev. A, Volume 46 (1992), p. 4773

[6] J. Lega; J.V. Moloney; A.C. Newell Swift–Hohenberg equation for lasers, Phys. Rev. Lett., Volume 73 (1994), pp. 2978-2981

[7] Y. Pomeau; P. Manneville Wave length selection in cellular flows, Phys. Lett. A, Volume 75 (1980), pp. 296-298

[8] L.A. Peletier, V. Rottschäfer, Pattern selection of solutions of the Swift–Hohenberg equation, to appear

[9] L.A. Peletier; W.C. Troy Spatial Patterns: Higher Order Models in Physics and Mechanics, Birkhäuser, Boston, 2001

[10] L.A. Peletier; W.C. Troy; R.C.A.M. van der Vorst Stationary solutions of a fourth order nonlinear diffusion equation, Differential'nye Uravneniya, Volume 31 (1995), pp. 327-337 (in Russian). English translation: Differential Equations 31 (1995) 301–314

[11] J.B. Swift; P.C. Hohenberg Hydrodynamic fluctuations at the convective instability, Phys. Rev. A, Volume 15 (1977), pp. 319-328

[12] J.B. van den Berg; R.C.A.M. van der Vorst Stable patterns for fourth order parabolic equations, Duke Math. J., Volume 115 (2002), pp. 513-558

Cité par Sources :

Commentaires - Politique