Let be a smooth bounded domain in . Assume that f⩾0 is a C1-function on [0,∞) such that f(u)/u is increasing on (0,+∞). Let a be a real number and let b⩾0, b≢0 be a continuous function such that b≡0 on . The purpose of this Note is to establish the asymptotic behaviour of the unique positive solution of the logistic problem Δu+au=b(x)f(u) in , subject to the singular boundary condition u(x)→+∞ as . Our analysis is based on the Karamata regular variation theory.
Soit un domaine borné et régulier de . On suppose que f∈C1[0,∞) est ⩾0 et telle que f(u)/u soit strictement croissante sur (0,+∞). Soit a un réel et b⩾0, b≢0, une fonction continue sur telle que b≡0 sur . Dans cette Note on établit le comportement asymptotique de l'unique solution positive du problème logistique Δu+au=b(x)f(u) sur avec la donnée au bord singulière u(x)→+∞ si . Notre analyse porte sur la théorie de la variation régulière de Karamata.
Accepted:
Published online:
Florica-Corina Cîrstea 1; Vicenţiu Rădulescu 2
@article{CRMATH_2003__336_3_231_0, author = {Florica-Corina C{\^\i}rstea and Vicen\c{t}iu R\u{a}dulescu}, title = {Asymptotics for the blow-up boundary solution of the logistic equation with absorption}, journal = {Comptes Rendus. Math\'ematique}, pages = {231--236}, publisher = {Elsevier}, volume = {336}, number = {3}, year = {2003}, doi = {10.1016/S1631-073X(03)00027-X}, language = {en}, }
TY - JOUR AU - Florica-Corina Cîrstea AU - Vicenţiu Rădulescu TI - Asymptotics for the blow-up boundary solution of the logistic equation with absorption JO - Comptes Rendus. Mathématique PY - 2003 SP - 231 EP - 236 VL - 336 IS - 3 PB - Elsevier DO - 10.1016/S1631-073X(03)00027-X LA - en ID - CRMATH_2003__336_3_231_0 ER -
Florica-Corina Cîrstea; Vicenţiu Rădulescu. Asymptotics for the blow-up boundary solution of the logistic equation with absorption. Comptes Rendus. Mathématique, Volume 336 (2003) no. 3, pp. 231-236. doi : 10.1016/S1631-073X(03)00027-X. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00027-X/
[1] Uniqueness of the blow-up boundary solution of logistic equations with absorption, C. R. Acad. Sci. Paris, Sér. I, Volume 335 (2002), pp. 447-452
[2] F. Cı̂rstea, V. Rădulescu, Solutions with boundary blow-up for a class of nonlinear elliptic problems, Houston J. Math., in press
[3] F. Cı̂rstea, V. Rădulescu, Blow-up solutions of logistic equations with absorption: uniqueness and asymptotics, in preparation
[4] Uniqueness and asymptotic behavior for solutions of semilinear problems with boundary blow-up, Proc. Amer. Math. Soc., Volume 129 (2001), pp. 3593-3602
[5] Sur un mode de croissance régulière de fonctions. Théorèmes fondamentaux, Bull. Soc. Math. France, Volume 61 (1933), pp. 55-62
[6] On solution of Δu=f(u), Comm. Pure Appl. Math., Volume 10 (1957), pp. 503-510
[7] On the inequality Δu⩾f(u), Pacific J. Math., Volume 7 (1957), pp. 1641-1647
[8] Regularly Varying Functions, Lecture Notes in Math., 508, Springer-Verlag, Berlin, 1976
Cited by Sources:
Comments - Policy