Comptes Rendus
Partial Differential Equations
Asymptotics for the blow-up boundary solution of the logistic equation with absorption
[Comportement asymptotique de la solution explosant au bord de l'équation logistique avec absorption]
Comptes Rendus. Mathématique, Volume 336 (2003) no. 3, pp. 231-236.

Let Ω be a smooth bounded domain in RN. Assume that f⩾0 is a C1-function on [0,∞) such that f(u)/u is increasing on (0,+∞). Let a be a real number and let b⩾0, b≢0 be a continuous function such that b≡0 on Ω. The purpose of this Note is to establish the asymptotic behaviour of the unique positive solution of the logistic problem Δu+au=b(x)f(u) in Ω, subject to the singular boundary condition u(x)→+∞ as dist(x,Ω)0. Our analysis is based on the Karamata regular variation theory.

Soit Ω un domaine borné et régulier de RN. On suppose que fC1[0,∞) est ⩾0 et telle que f(u)/u soit strictement croissante sur (0,+∞). Soit a un réel et b⩾0, b≢0, une fonction continue sur Ω¯ telle que b≡0 sur Ω. Dans cette Note on établit le comportement asymptotique de l'unique solution positive du problème logistique Δu+au=b(x)f(u) sur Ω avec la donnée au bord singulière u(x)→+∞ si dist(x,Ω)0. Notre analyse porte sur la théorie de la variation régulière de Karamata.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(03)00027-X

Florica-Corina Cîrstea 1 ; Vicenţiu Rădulescu 2

1 School of Computer Science and Mathematics, Victoria University of Technology, PO Box 14428, Melbourne City MC, Victoria 8001, Australia
2 Department of Mathematics, University of Craiova, 1100 Craiova, Romania
@article{CRMATH_2003__336_3_231_0,
     author = {Florica-Corina C{\^\i}rstea and Vicen\c{t}iu R\u{a}dulescu},
     title = {Asymptotics for the blow-up boundary solution of the logistic equation with absorption},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {231--236},
     publisher = {Elsevier},
     volume = {336},
     number = {3},
     year = {2003},
     doi = {10.1016/S1631-073X(03)00027-X},
     language = {en},
}
TY  - JOUR
AU  - Florica-Corina Cîrstea
AU  - Vicenţiu Rădulescu
TI  - Asymptotics for the blow-up boundary solution of the logistic equation with absorption
JO  - Comptes Rendus. Mathématique
PY  - 2003
SP  - 231
EP  - 236
VL  - 336
IS  - 3
PB  - Elsevier
DO  - 10.1016/S1631-073X(03)00027-X
LA  - en
ID  - CRMATH_2003__336_3_231_0
ER  - 
%0 Journal Article
%A Florica-Corina Cîrstea
%A Vicenţiu Rădulescu
%T Asymptotics for the blow-up boundary solution of the logistic equation with absorption
%J Comptes Rendus. Mathématique
%D 2003
%P 231-236
%V 336
%N 3
%I Elsevier
%R 10.1016/S1631-073X(03)00027-X
%G en
%F CRMATH_2003__336_3_231_0
Florica-Corina Cîrstea; Vicenţiu Rădulescu. Asymptotics for the blow-up boundary solution of the logistic equation with absorption. Comptes Rendus. Mathématique, Volume 336 (2003) no. 3, pp. 231-236. doi : 10.1016/S1631-073X(03)00027-X. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00027-X/

[1] F. Cı̂rstea; V. Rădulescu Uniqueness of the blow-up boundary solution of logistic equations with absorption, C. R. Acad. Sci. Paris, Sér. I, Volume 335 (2002), pp. 447-452

[2] F. Cı̂rstea, V. Rădulescu, Solutions with boundary blow-up for a class of nonlinear elliptic problems, Houston J. Math., in press

[3] F. Cı̂rstea, V. Rădulescu, Blow-up solutions of logistic equations with absorption: uniqueness and asymptotics, in preparation

[4] J. García-Melián; R. Letelier-Albornez; J. Sabina de Lis Uniqueness and asymptotic behavior for solutions of semilinear problems with boundary blow-up, Proc. Amer. Math. Soc., Volume 129 (2001), pp. 3593-3602

[5] J. Karamata Sur un mode de croissance régulière de fonctions. Théorèmes fondamentaux, Bull. Soc. Math. France, Volume 61 (1933), pp. 55-62

[6] J.B. Keller On solution of Δu=f(u), Comm. Pure Appl. Math., Volume 10 (1957), pp. 503-510

[7] R. Osserman On the inequality Δuf(u), Pacific J. Math., Volume 7 (1957), pp. 1641-1647

[8] E. Seneta Regularly Varying Functions, Lecture Notes in Math., 508, Springer-Verlag, Berlin, 1976

  • Haitao Wan Sharp asymptotic expansions of entire large solutions to a class of k-Hessian equations with weights, Advances in Nonlinear Analysis, Volume 14 (2025), p. 18 (Id/No 20250076) | DOI:10.1515/anona-2025-0076 | Zbl:8025915
  • Saber Ezzdini; Zagharide Zine El Abidine Estimating potential functions with applications to elliptic problems in half space, Complex Variables and Elliptic Equations, Volume 70 (2025) no. 5, pp. 755-773 | DOI:10.1080/17476933.2024.2341768 | Zbl:8037556
  • Zeineb Ben Yahia; Zagharide Zine El Abidine Nonlinear polyharmonic boundary value problems in the punctured unit ball, Complex Variables and Elliptic Equations, Volume 69 (2024) no. 12, pp. 1982-2004 | DOI:10.1080/17476933.2023.2266681 | Zbl:1553.35086
  • Fang Liu; Hong Sun Viscosity solutions to the infinity Laplacian equation with singular nonlinear terms, Journal of the Australian Mathematical Society, Volume 117 (2024) no. 3, pp. 345-374 | DOI:10.1017/s1446788724000041 | Zbl:1555.35100
  • Haitao Wan The classical boundary blow-up solutions for a class of Gaussian curvature equations, The Journal of Geometric Analysis, Volume 34 (2024) no. 11, p. 56 (Id/No 336) | DOI:10.1007/s12220-024-01785-5 | Zbl:1547.35303
  • Cuicui Li; Fang Liu Viscosity solutions to the infinity Laplacian equation with lower terms, Electronic Journal of Differential Equations, Volume 2023 (2023) no. 01-?? | DOI:10.58997/ejde.2023.42
  • Cuicui Li; Fang Liu Viscosity solutions to the infinity Laplacian equation with lower terms, Electronic Journal of Differential Equations (EJDE), Volume 2023 (2023), p. 23 (Id/No 42) | Zbl:1519.35165
  • Cuicui Li; Fang Liu; Peibiao Zhao Boundary blow-up solutions to equations involving the infinity Laplacian, Journal of the Australian Mathematical Society, Volume 114 (2023) no. 3, pp. 337-358 | DOI:10.1017/s1446788722000131 | Zbl:1514.35186
  • Sywar Belkahla; Zagharide Zine El Abidine Sharp asymptotic analysis of positive solutions of a combined Sturm-Liouville problem, Matematički Vesnik, Volume 75 (2023) no. 1, pp. 58-70 | DOI:10.57016/mv-xfoq5120 | Zbl:7803634
  • Ling Mi; Chuan Chen Boundary behavior of large solutions to the infinity Laplace equations on the half-line, Mathematical Notes, Volume 114 (2023) no. 5, pp. 883-894 | DOI:10.1134/s0001434623110238 | Zbl:1545.34032
  • Haitao Wan; Yongxiu Shi; Wei Liu Refined second boundary behavior of the unique strictly convex solution to a singular Monge-Ampère equation, Advances in Nonlinear Analysis, Volume 11 (2022), pp. 321-356 | DOI:10.1515/anona-2022-0199 | Zbl:1479.35505
  • Yongxiu Shi; Haitao Wan Pointwise boundary behavior of large solutions to -Laplacian equations, Rocky Mountain Journal of Mathematics, Volume 52 (2022) no. 3, pp. 1047-1061 | DOI:10.1216/rmj.2022.52.1047 | Zbl:1492.35050
  • Ling Mi; Chuan Chen Boundary behavior of large solutions to a class of Hessian equations, Asymptotic Analysis, Volume 125 (2021) no. 1-2, pp. 187-202 | DOI:10.3233/asy-201656 | Zbl:1486.35191
  • Imed Bachar; Habib Mâagli; Hassan Eltayeb Combined effects in singular elliptic problems in punctured domain, Journal of Function Spaces, Volume 2021 (2021), p. 10 (Id/No 6630457) | DOI:10.1155/2021/6630457 | Zbl:1459.35207
  • Xianzhong Zeng; Lingyu Liu; Weiyuan Xie Existence and uniqueness of the positive steady state solution for a Lotka-Volterra predator-prey model with a crowding term, Acta Mathematica Scientia. Series B. (English Edition), Volume 40 (2020) no. 6, pp. 1961-1980 | DOI:10.1007/s10473-020-0622-7 | Zbl:1499.35252
  • Imed Bachar; Habib Mâagli; Said Mesloub Positive solutions of semilinear problems in an exterior domain of R2, Boundary Value Problems, Volume 2019 (2019), p. 24 (Id/No 65) | DOI:10.1186/s13661-019-1178-0 | Zbl:1524.35266
  • Dongsheng Li; Shanshan Ma Existence and boundary behavior of solutions of Hessian equations with singular right-hand sides, Journal of Functional Analysis, Volume 276 (2019) no. 10, pp. 2969-2989 | DOI:10.1016/j.jfa.2019.02.018 | Zbl:1411.35065
  • Shanshan Ma; Dongsheng Li Existence and boundary asymptotic behavior of large solutions of Hessian equations, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 187 (2019), pp. 1-17 | DOI:10.1016/j.na.2019.03.021 | Zbl:1427.35059
  • Bilel Khamessi; Sonia Ben Othman Exact boundary behavior of positive large solutions of a nonlinear Dirichlet problem, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 187 (2019), pp. 307-319 | DOI:10.1016/j.na.2019.05.001 | Zbl:1427.35083
  • Bo Li; Haitao Wan Blow-up rates and uniqueness of entire large solutions to a semilinear elliptic equation with nonlinear convection term, Boundary Value Problems, Volume 2018 (2018), p. 14 (Id/No 179) | DOI:10.1186/s13661-018-1101-0 | Zbl:1499.35269
  • Xianzhong Zeng; Yonggeng Gu Existence and the dynamical behaviors of the positive solutions for a ratio-dependent predator-prey system with the crowing term and the weak growth, Journal of Differential Equations, Volume 264 (2018) no. 5, pp. 3559-3595 | DOI:10.1016/j.jde.2017.11.026 | Zbl:1401.35193
  • Haitao Wan; Yongxiu Shi The second expansion of the unique vanishing at infinity solution to a singular elliptic equation, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 171 (2018), pp. 238-270 | DOI:10.1016/j.na.2018.02.007 | Zbl:1392.35097
  • Ling Mi Blow-up rates of large solutions for infinity Laplace equations, Applied Mathematics and Computation, Volume 298 (2017), pp. 36-44 | DOI:10.1016/j.amc.2016.11.007 | Zbl:1411.35119
  • H. Mâagli; Z. Zine El Abidine Existence and asymptotic behaviour of positive solutions for semilinear polyharmonic coupled systems, Complex Variables and Elliptic Equations, Volume 62 (2017) no. 11, p. 1665 | DOI:10.1080/17476933.2017.1286332
  • Haitao Wan Asymptotic behavior of entire large solutions to semilinear elliptic equations, Journal of Mathematical Analysis and Applications, Volume 448 (2017) no. 1, pp. 44-59 | DOI:10.1016/j.jmaa.2016.10.071 | Zbl:1358.35041
  • Shijie Qi; Peihao Zhao Large solutions for a semilinear elliptic problem with sign-changing weights, Journal of Mathematical Analysis and Applications, Volume 452 (2017) no. 2, pp. 1310-1331 | DOI:10.1016/j.jmaa.2017.03.065 | Zbl:1373.35139
  • Dongsheng Li; Shanshan Ma Boundary behavior of solutions of Monge-Ampère equations with singular righthand sides, Journal of Mathematical Analysis and Applications, Volume 454 (2017) no. 1, pp. 79-93 | DOI:10.1016/j.jmaa.2017.04.074 | Zbl:1386.35128
  • Xianzhong ZENG; Yonggeng GU Persistence and the global dynamics of the positive solutions for a ratio-dependent predator-prey system with a crowding term in the prey equation, Acta Mathematica Scientia, Volume 36 (2016) no. 3, p. 689 | DOI:10.1016/s0252-9602(16)30032-7
  • Ling Mi Existence and boundary behavior of solutions to p-Laplacian elliptic equations, Boundary Value Problems, Volume 2016 (2016), p. 15 (Id/No 119) | DOI:10.1186/s13661-016-0627-2 | Zbl:1383.35096
  • Haitao Wan The second order expansion of boundary blow-up solutions for infinity-Laplacian equations, Journal of Mathematical Analysis and Applications, Volume 436 (2016) no. 1, pp. 179-202 | DOI:10.1016/j.jmaa.2015.11.054 | Zbl:1331.35059
  • Shuibo Huang Asymptotic behavior of boundary blow-up solutions to elliptic equations, ZAMP. Zeitschrift für angewandte Mathematik und Physik, Volume 67 (2016) no. 1, p. 20 (Id/No 3) | DOI:10.1007/s00033-015-0606-y | Zbl:1339.35114
  • Haitao Wan The exact asymptotic behavior of boundary blow-up solutions to infinity Laplacian equations, ZAMP. Zeitschrift für angewandte Mathematik und Physik, Volume 67 (2016) no. 4, p. 14 (Id/No 97) | DOI:10.1007/s00033-016-0694-3 | Zbl:1366.35046
  • Z. Fu; B. Liu; L. Mi Blow-up rate of the unique solution for a class of one-dimensional equations with a weakly superlinear nonlinearity, Acta Mathematica Hungarica, Volume 145 (2015) no. 2, pp. 309-319 | DOI:10.1007/s10474-015-0483-z | Zbl:1363.34100
  • Ling Mi; Bin Liu Second order expansion for the solution to a singular Dirichlet problem, Applied Mathematics and Computation, Volume 270 (2015), pp. 401-412 | DOI:10.1016/j.amc.2015.08.036 | Zbl:1410.35048
  • Ling Mi The exact asymptotic behavior of blow-up solutions to a highly degenerate elliptic problem, Boundary Value Problems, Volume 2015 (2015), p. 12 (Id/No 216) | DOI:10.1186/s13661-015-0482-6 | Zbl:1341.35076
  • Yun-Feng Ma; Zhong Bo Fang The first and second expansion of large solutions for quasilinear elliptic equations with weight functions, Boundary Value Problems, Volume 2015 (2015), p. 19 (Id/No 234) | DOI:10.1186/s13661-015-0498-y | Zbl:1332.35120
  • Ling Mi Asymptotic behavior for the unique positive solution to a singular elliptic problem, Communications on Pure and Applied Analysis, Volume 14 (2015) no. 3, pp. 1053-1072 | DOI:10.3934/cpaa.2015.14.1053 | Zbl:1314.35033
  • Ling Mi Boundary behavior for the solutions to Dirichlet problems involving the infinity-Laplacian, Journal of Mathematical Analysis and Applications, Volume 425 (2015) no. 2, pp. 1061-1070 | DOI:10.1016/j.jmaa.2014.12.070 | Zbl:1312.35071
  • Xianzhong Zeng; Jianchen Zhang; Yonggeng Gu Uniqueness and stability of positive steady state solutions for a ratio-dependent predator-prey system with a crowding term in the prey equation, Nonlinear Analysis. Real World Applications, Volume 24 (2015), pp. 163-174 | DOI:10.1016/j.nonrwa.2015.02.005 | Zbl:1327.35160
  • Wei Wang; Hanzhao Gong; Sining Zheng Asymptotic estimates of boundary blow-up solutions to the infinity Laplace equations, Journal of Differential Equations, Volume 256 (2014) no. 11, pp. 3721-3742 | DOI:10.1016/j.jde.2014.02.018 | Zbl:1287.35038
  • Chunlian Liu; Zuodong Yang Boundary blow-up quasilinear elliptic problems with nonlinear gradient terms, Complex Variables and Elliptic Equations, Volume 57 (2012) no. 6, pp. 687-704 | DOI:10.1080/17476933.2010.534143 | Zbl:1253.35045
  • Salomón Alarcón; Jorge García-Melián; Alexander Quaas Keller-Osserman type conditions for some elliptic problems with gradient terms, Journal of Differential Equations, Volume 252 (2012) no. 2, pp. 886-914 | DOI:10.1016/j.jde.2011.09.033 | Zbl:1235.35096
  • Dušan Repovš Asymptotics for singular solutions of quasilinear elliptic equations with an absorption term, Journal of Mathematical Analysis and Applications, Volume 395 (2012) no. 1, pp. 78-85 | DOI:10.1016/j.jmaa.2012.05.017 | Zbl:1250.35109
  • Ling Mi; Yanfeng Qi; Bin Liu Blow-up rate of the unique solution for a class of one-dimensional p-Laplacian equations, Nonlinear Analysis. Real World Applications, Volume 13 (2012) no. 6, pp. 2734-2746 | DOI:10.1016/j.nonrwa.2012.03.015 | Zbl:1266.34053
  • Jorge García-Melián; José C. Sabina de Lis A boundary blow-up problem with a nonlocal reaction, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 75 (2012) no. 5, pp. 2774-2792 | DOI:10.1016/j.na.2011.11.020 | Zbl:1242.35127
  • Shuibo Huang; Qiaoyu Tian Boundary behaviour of explosive solution to quasilinear elliptic problems with nonlinear gradient terms, Applicable Analysis, Volume 90 (2011) no. 9, p. 1391 | DOI:10.1080/00036811.2010.524159
  • Shuibo Huang; Qiaoyu Tian Boundary blow-up rates of large solutions for elliptic equations with convection terms, Journal of Mathematical Analysis and Applications, Volume 373 (2011) no. 1, pp. 30-43 | DOI:10.1016/j.jmaa.2010.06.031 | Zbl:1201.35105
  • Zhijun Zhang The second expansion of the solution for a singular elliptic boundary value problem, Journal of Mathematical Analysis and Applications, Volume 381 (2011) no. 2, pp. 922-934 | DOI:10.1016/j.jmaa.2011.04.018 | Zbl:1221.35174
  • Zhijun Zhang The second expansion of large solutions for semilinear elliptic equations, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 74 (2011) no. 11, pp. 3445-3457 | DOI:10.1016/j.na.2011.02.031 | Zbl:1217.35074
  • Shuibo Huang; Qiaoyu Tian Second order estimates for large solutions of elliptic equations, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 74 (2011) no. 5, pp. 2031-2044 | DOI:10.1016/j.na.2010.11.012 | Zbl:1210.35107
  • Shuibo Huang; Qiaoyu Tian; Shengzhi Zhang; Jinhua Xi A second-order estimate for blow-up solutions of elliptic equations, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 74 (2011) no. 6, pp. 2342-2350 | DOI:10.1016/j.na.2010.11.037 | Zbl:1210.35108
  • Sabrine Gontara; Habib Mâagli; Syrine Masmoudi; Sameh Turki Asymptotic behavior of positive solutions of a singular nonlinear Dirichlet problem, Journal of Mathematical Analysis and Applications, Volume 369 (2010) no. 2, pp. 719-729 | DOI:10.1016/j.jmaa.2010.04.008 | Zbl:1196.35109
  • Huabing Feng; Chengkui Zhong Boundary behavior of solutions for the degenerate logistic type elliptic problem with boundary blow-up, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 73 (2010) no. 10, pp. 3472-3478 | DOI:10.1016/j.na.2009.11.052 | Zbl:1200.35132
  • S. Cano-Casanova; J. López-Gómez Blow-up rates of radially symmetric large solutions, Journal of Mathematical Analysis and Applications, Volume 352 (2009) no. 1, pp. 166-174 | DOI:10.1016/j.jmaa.2008.06.022 | Zbl:1163.35015
  • Jorge García-Melián Uniqueness of positive solutions for a boundary blow-up problem, Journal of Mathematical Analysis and Applications, Volume 360 (2009) no. 2, pp. 530-536 | DOI:10.1016/j.jmaa.2009.06.077 | Zbl:1182.35006
  • Shuibo Huang; Qiaoyu Tian Asymptotic behavior of large solutions to p-Laplacian of Bieberbach-Rademacher type, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 71 (2009) no. 11, pp. 5773-5780 | DOI:10.1016/j.na.2009.04.064 | Zbl:1176.35080
  • Sonia Ben Othman; Habib Mâagli; Syrine Masmoudi; Malek Zribi Exact asymptotic behavior near the boundary to the solution for singular nonlinear Dirichlet problems, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 71 (2009) no. 9, pp. 4137-4150 | DOI:10.1016/j.na.2009.02.073 | Zbl:1177.35091
  • Zhang Zhijiun The existence and global optimal asymptotic behaviour of large solutions for a semilinear elliptic problem, Acta Mathematica Scientia, Volume 28 (2008) no. 3, p. 595 | DOI:10.1016/s0252-9602(08)60062-4
  • Chunlian Liu; Zuodong Yang Existence of large solutions for a quasilinear elliptic problem via explosive sub-supersolutions, Applied Mathematics and Computation, Volume 199 (2008) no. 2, pp. 414-424 | DOI:10.1016/j.amc.2007.10.009 | Zbl:1141.35025
  • Santiago Cano-Casanova; Julián López-Gómez Existence, uniqueness and blow-up rate of large solutions for a canonical class of one-dimensional problems on the half-line, Journal of Differential Equations, Volume 244 (2008) no. 12, pp. 3180-3203 | DOI:10.1016/j.jde.2007.11.012 | Zbl:1149.34020
  • Pablo Álvarez-Caudevilla; Julián López-Gómez Metasolutions in cooperative systems, Nonlinear Analysis. Real World Applications, Volume 9 (2008) no. 3, pp. 1119-1157 | DOI:10.1016/j.nonrwa.2007.02.010 | Zbl:1154.92036
  • Zhijun Zhang A boundary blow-up elliptic problem with an inhomogeneous term, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 68 (2008) no. 11, pp. 3428-3438 | DOI:10.1016/j.na.2007.03.034 | Zbl:1158.35040
  • Tiancheng Ouyang; Zhifu Xie The exact boundary blow-up rate of large solutions for semilinear elliptic problems, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 68 (2008) no. 9, pp. 2791-2800 | DOI:10.1016/j.na.2007.02.026 | Zbl:1138.35025
  • Zhijun Zhang; Jianning Yu The exact asymptotic behaviour of the unique solution to a singular nonlinear Dirichlet problem, Journal of Mathematical Analysis and Applications, Volume 329 (2007) no. 2, pp. 1330-1342 | DOI:10.1016/j.jmaa.2006.07.052 | Zbl:1154.35356
  • Vicenţiu D. Rădulescu Singular Phenomena in Nonlinear Elliptic Problems: From Blow-Up Boundary Solutions to Equations with Singular Nonlinearities, Stationary Partial Differential Equations, Volume 4 (2007), p. 485 | DOI:10.1016/s1874-5733(07)80010-6
  • Zhijun Zhang; Jianning Yu The exact asymptotic behaviour of the unique solution to a singular Dirichlet problem, Boundary Value Problems, Volume 2006 (2006), p. 10 (Id/No 75674) | DOI:10.1155/bvp/2006/75674 | Zbl:1136.35388
  • Julián López-Gómez Optimal uniqueness theorems and exact blow-up rates of large solutions, Journal of Differential Equations, Volume 224 (2006) no. 2, pp. 385-439 | DOI:10.1016/j.jde.2005.08.008 | Zbl:1208.35036
  • Zhijun Zhang Boundary blow-up elliptic problems with nonlinear gradient terms, Journal of Differential Equations, Volume 228 (2006) no. 2, pp. 661-684 | DOI:10.1016/j.jde.2006.02.003 | Zbl:1130.35063
  • Zhijun Zhang The asymptotic behaviour of solutions with blow-up at the boundary for semilinear elliptic problems, Journal of Mathematical Analysis and Applications, Volume 308 (2005) no. 2, pp. 532-540 | DOI:10.1016/j.jmaa.2004.11.029 | Zbl:1160.35417
  • Zhijun Zhang The asymptotic behaviour of the unique solution for the singular Lane-Emden-Fowler equation, Journal of Mathematical Analysis and Applications, Volume 312 (2005) no. 1, pp. 33-43 | DOI:10.1016/j.jmaa.2005.03.023 | Zbl:1165.35377
  • Zhijun Zhang The asymptotic behaviour of solutions with boundary blow-up for semilinear elliptic equations with nonlinear gradient terms, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 62 (2005) no. 6, pp. 1137-1148 | DOI:10.1016/j.na.2005.04.028 | Zbl:1213.35225
  • Julián López-Gómez Metasolutions: Malthus versus Verhulst in Population Dynamics. A Dream of Volterra, Stationary Partial Differential Equations, Volume 2 (2005), p. 211 | DOI:10.1016/s1874-5733(05)80012-9
  • Julián López-Gómez The boundary blow-up rate of large solutions., Journal of Differential Equations, Volume 195 (2003) no. 1, pp. 25-45 | DOI:10.1016/j.jde.2003.06.003 | Zbl:1130.35329

Cité par 73 documents. Sources : Crossref, zbMATH

Commentaires - Politique