Comptes Rendus
Uniqueness of the blow-up boundary solution of logistic equations with absorbtion
[Unicité de la solution explosant au bord pour équations logistiques avec absorption]
Comptes Rendus. Mathématique, Volume 335 (2002) no. 5, pp. 447-452.

Soit Ω un domaine borné et régulier de N. On suppose que fC1[0,∞) est une fonction non-negative telle que f(u)/u soit strictement croissante sur (0,+∞). Soit a un réel et b⩾0, b/0 une fonction continue sur Ω¯. On étudie l'équation logistique Δu+au=b(x)f(u) sur Ω. Le but de cette Note est de montrer l'unicité de la solution explosant au bord de Ω dans un contexte général, qui apparaı̂t en théorie des probabilités.

Let Ω be a smooth bounded domain in N. Assume fC1[0,∞) is a non-negative function such that f(u)/u is increasing on (0,∞). Let a be a real number and let b⩾0, b/0 be a continuous function such that b≡0 on Ω. We study the logistic equation Δu+au=b(x)f(u) in Ω. The special feature of this work is the uniqueness of positive solutions blowing-up on Ω, in a general setting that arises in probability theory.

Reçu le :
Publié le :
DOI : 10.1016/S1631-073X(02)02503-7

Florica-Corina Cı̂rstea 1 ; Vicenţiu Rădulescu 2

1 School of Communications and Informatics, Victoria University of Technology, P.O. Box 14428, Melbourne City MC, Victoria 8001, Australia
2 Department of Mathematics, University of Craiova, 1100 Craiova, Romania
@article{CRMATH_2002__335_5_447_0,
     author = {Florica-Corina C{\i}̂rstea and Vicen\c{t}iu R\u{a}dulescu},
     title = {Uniqueness of the blow-up boundary solution of logistic equations with absorbtion},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {447--452},
     publisher = {Elsevier},
     volume = {335},
     number = {5},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02503-7},
     language = {en},
}
TY  - JOUR
AU  - Florica-Corina Cı̂rstea
AU  - Vicenţiu Rădulescu
TI  - Uniqueness of the blow-up boundary solution of logistic equations with absorbtion
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 447
EP  - 452
VL  - 335
IS  - 5
PB  - Elsevier
DO  - 10.1016/S1631-073X(02)02503-7
LA  - en
ID  - CRMATH_2002__335_5_447_0
ER  - 
%0 Journal Article
%A Florica-Corina Cı̂rstea
%A Vicenţiu Rădulescu
%T Uniqueness of the blow-up boundary solution of logistic equations with absorbtion
%J Comptes Rendus. Mathématique
%D 2002
%P 447-452
%V 335
%N 5
%I Elsevier
%R 10.1016/S1631-073X(02)02503-7
%G en
%F CRMATH_2002__335_5_447_0
Florica-Corina Cı̂rstea; Vicenţiu Rădulescu. Uniqueness of the blow-up boundary solution of logistic equations with absorbtion. Comptes Rendus. Mathématique, Volume 335 (2002) no. 5, pp. 447-452. doi : 10.1016/S1631-073X(02)02503-7. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02503-7/

[1] S. Alama; G. Tarantello On the solvability of a semilinear elliptic equation via an associated eigenvalue problem, Math. Z., Volume 221 (1996), pp. 467-493

[2] C. Bandle; M. Marcus ‘Large’ solutions of semilinear elliptic equations: existence, uniqueness and asymptotic behavior, J. Anal. Math., Volume 58 (1992), pp. 9-24

[3] F. Cı̂rstea, V. Rădulescu, Solutions with boundary blow-up for a class of nonlinear elliptic problems, Houston J. Math., in press

[4] F. Cı̂rstea; V. Rădulescu Existence and uniqueness of blow-up solutions for a class of logistic equations, Commun. Contemp. Math., Volume 4 (2002), pp. 559-586

[5] Y. Du; Q. Huang Blow-up solutions for a class of semilinear elliptic and parabolic equations, SIAM J. Math. Anal., Volume 31 (1999), pp. 1-18

[6] J. Garcı́a-Melián; R. Letelier-Albornoz; J. Sabina de Lis Uniqueness and asymptotic behaviour for solutions of semilinear problems with boundary blow-up, Proc. Amer. Math. Soc., Volume 129 (2001), pp. 3593-3602

[7] J.B. Keller On solution of Δu=f(u), Comm. Pure Appl. Math., Volume 10 (1957), pp. 503-510

[8] C. Loewner; L. Nirenberg Partial differential equations invariant under conformal or projective transformations (L. Alhfors, ed.), Contributions to Analysis, Academic Press, New York, 1974, pp. 245-272

[9] M. Marcus; L. Véron Uniqueness and asymptotic behavior of solutions with boundary blow-up for a class of nonlinear elliptic equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 14 (1997), pp. 237-274

[10] R. Osserman On the inequality Δuf(u), Pacific J. Math., Volume 7 (1957), pp. 1641-1647

[11] E. Seneta Regularly Varying Functions, Lecture Notes in Math., 508, Springer-Verlag, Berlin, Heidelberg, 1976

[12] L. Véron Semilinear elliptic equations with uniform blow-up on the boundary, J. Anal. Math., Volume 59 (1992), pp. 231-250

  • Haitao Wan Sharp asymptotic expansions of entire large solutions to a class of k-Hessian equations with weights, Advances in Nonlinear Analysis, Volume 14 (2025) no. 1 | DOI:10.1515/anona-2025-0076
  • Haitao Wan On the large solutions to a class of k-Hessian problems, Advanced Nonlinear Studies, Volume 24 (2024) no. 3, pp. 657-695 | DOI:10.1515/ans-2023-0128 | Zbl:1540.35189
  • Zeineb Ben Yahia; Zagharide Zine El Abidine Nonlinear polyharmonic boundary value problems in the punctured unit ball, Complex Variables and Elliptic Equations, Volume 69 (2024) no. 12, pp. 1982-2004 | DOI:10.1080/17476933.2023.2266681 | Zbl:7948885
  • Lin-Lin Wang; Yong-Hong Fan A sufficient and necessary condition for one dimensional boundary blow-up problem with p-Laplace operator, Indian Journal of Pure and Applied Mathematics (2024) | DOI:10.1007/s13226-024-00595-3
  • Fang Liu; Hong Sun Viscosity solutions to the infinity Laplacian equation with singular nonlinear terms, Journal of the Australian Mathematical Society, Volume 117 (2024) no. 3, pp. 345-374 | DOI:10.1017/s1446788724000041 | Zbl:7962769
  • Haitao Wan The classical boundary blow-up solutions for a class of Gaussian curvature equations, The Journal of Geometric Analysis, Volume 34 (2024) no. 11, p. 56 (Id/No 336) | DOI:10.1007/s12220-024-01785-5 | Zbl:1547.35303
  • Ling Mi; Chuan Chen Asymptotic estimates of large solutions to the infinity Laplacian equations, ZAMP. Zeitschrift für angewandte Mathematik und Physik, Volume 75 (2024) no. 2, p. 14 (Id/No 71) | DOI:10.1007/s00033-024-02221-y | Zbl:1537.35078
  • Cuicui Li; Fang Liu Viscosity solutions to the infinity Laplacian equation with lower terms, Electronic Journal of Differential Equations, Volume 2023 (2023) no. 01-?? | DOI:10.58997/ejde.2023.42
  • Cuicui Li; Fang Liu Viscosity solutions to the infinity Laplacian equation with lower terms, Electronic Journal of Differential Equations (EJDE), Volume 2023 (2023), p. 23 (Id/No 42) | Zbl:1519.35165
  • Haitao Wan; Yongxiu Shi The optimal global estimates and boundary behavior for large solutions to the k-Hessian equation, Frontiers of Mathematics, Volume 18 (2023) no. 2, pp. 341-383 | DOI:10.1007/s11464-020-0045-8 | Zbl:1526.35164
  • Cuicui Li; Fang Liu; Peibiao Zhao Boundary blow-up solutions to equations involving the infinity Laplacian, Journal of the Australian Mathematical Society, Volume 114 (2023) no. 3, pp. 337-358 | DOI:10.1017/s1446788722000131 | Zbl:1514.35186
  • Sywar Belkahla; Zagharide Zine El Abidine Sharp asymptotic analysis of positive solutions of a combined Sturm-Liouville problem, Matematički Vesnik, Volume 75 (2023) no. 1, pp. 58-70 | DOI:10.57016/mv-xfoq5120 | Zbl:7803634
  • Wenbing Wu Uniqueness and stability analysis to a system of nonlocal partial differential equations related to an epidemic model, Mathematical Methods in the Applied Sciences, Volume 46 (2023) no. 8, pp. 8445-8462 | DOI:10.1002/mma.8990 | Zbl:1527.35156
  • Ling Mi; Chuan Chen Boundary behavior of large solutions to the infinity Laplace equations on the half-line, Mathematical Notes, Volume 114 (2023) no. 5, pp. 883-894 | DOI:10.1134/s0001434623110238 | Zbl:1545.34032
  • Haitao Wan; Yongxiu Shi; Wei Liu Refined second boundary behavior of the unique strictly convex solution to a singular Monge-Ampère equation, Advances in Nonlinear Analysis, Volume 11 (2022), pp. 321-356 | DOI:10.1515/anona-2022-0199 | Zbl:1479.35505
  • Imed Bachar; Entesar Aljarallah Existence and asymptotic properties of singular solutions of nonlinear elliptic equations in Rn{0}, Boundary Value Problems, Volume 2022 (2022), p. 19 (Id/No 4) | DOI:10.1186/s13661-022-01584-3 | Zbl:1497.35210
  • Yongxiu Shi; Haitao Wan Pointwise boundary behavior of large solutions to -Laplacian equations, Rocky Mountain Journal of Mathematics, Volume 52 (2022) no. 3, pp. 1047-1061 | DOI:10.1216/rmj.2022.52.1047 | Zbl:1492.35050
  • Hai Tao Wan; Xi Liang Li The exact asymptotic behavior of large solutions to a class of quasilinear elliptic equations with weights, Acta Mathematica Sinica. Chinese Series, Volume 64 (2021) no. 4, pp. 551-568 | Zbl:1524.35087
  • Mohamed Jleli; Bessem Samet; Calogero Vetro On the critical behavior for inhomogeneous wave inequalities with Hardy potential in an exterior domain, Advances in Nonlinear Analysis, Volume 10 (2021), pp. 1267-1283 | DOI:10.1515/anona-2020-0181 | Zbl:1470.35443
  • Ling Mi; Chuan Chen Boundary behavior of large solutions to a class of Hessian equations, Asymptotic Analysis, Volume 125 (2021) no. 1-2, pp. 187-202 | DOI:10.3233/asy-201656 | Zbl:1486.35191
  • Yongxiu Shi; Haitao Wan Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case, Electronic Research Archive, Volume 29 (2021) no. 3, pp. 2359-2373 | DOI:10.3934/era.2020119 | Zbl:1466.35230
  • Imed Bachar; Habib Mâagli; Hassan Eltayeb Combined effects in singular elliptic problems in punctured domain, Journal of Function Spaces, Volume 2021 (2021), p. 10 (Id/No 6630457) | DOI:10.1155/2021/6630457 | Zbl:1459.35207
  • Haitao Wan; Yongxiu Shi; Xiaoyan Qiao Entire large solutions to the k-Hessian equations with weights: existence, uniqueness and asymptotic behavior, Journal of Mathematical Analysis and Applications, Volume 503 (2021) no. 1, p. 24 (Id/No 125301) | DOI:10.1016/j.jmaa.2021.125301 | Zbl:1468.35078
  • Jianduo Yu; Feiyao Ma; Weifeng Wo Large solutions to elliptic systems of -Laplacian equations, Mathematical Notes, Volume 109 (2021) no. 6, pp. 971-979 | DOI:10.1134/s000143462105031x | Zbl:1468.35058
  • Zhijun Zhang Optimal global asymptotic behaviour of the solution to a class of singular Dirichlet problems, Proceedings of the Royal Society of Edinburgh. Section A. Mathematics, Volume 151 (2021) no. 3, pp. 1116-1134 | DOI:10.1017/prm.2020.52 | Zbl:1466.35220
  • Xianzhong Zeng; Lingyu Liu; Weiyuan Xie Existence and uniqueness of the positive steady state solution for a Lotka-Volterra predator-prey model with a crowding term, Acta Mathematica Scientia. Series B. (English Edition), Volume 40 (2020) no. 6, pp. 1961-1980 | DOI:10.1007/s10473-020-0622-7 | Zbl:1499.35252
  • Xuemei Zhang Existence and uniqueness of nontrivial radial solutions for k-Hessian equations, Journal of Mathematical Analysis and Applications, Volume 492 (2020) no. 1, p. 19 (Id/No 124439) | DOI:10.1016/j.jmaa.2020.124439 | Zbl:1460.35149
  • Zhijun Zhang Exact boundary behavior of large solutions to semilinear elliptic equations with a nonlinear gradient term, Science China. Mathematics, Volume 63 (2020) no. 3, pp. 559-574 | DOI:10.1007/s11425-017-9275-y | Zbl:1437.35364
  • Ahmed Mohammed; Giovanni Porru Large solutions to non-divergence structure semilinear elliptic equations with inhomogeneous term, Advances in Nonlinear Analysis, Volume 8 (2019), pp. 517-532 | DOI:10.1515/anona-2017-0065 | Zbl:1419.35045
  • Imed Bachar; Habib Mâagli; Said Mesloub Positive solutions of semilinear problems in an exterior domain of R2, Boundary Value Problems, Volume 2019 (2019), p. 24 (Id/No 65) | DOI:10.1186/s13661-019-1178-0 | Zbl:1524.35266
  • Ling Mi Asymptotic boundary estimates for solutions to the p-Laplacian with infinite boundary values, Boundary Value Problems, Volume 2019 (2019), p. 27 (Id/No 66) | DOI:10.1186/s13661-019-1179-z | Zbl:1524.35268
  • Imed Bachar; Habib Mâagli Singular solutions of a nonlinear equation in a punctured domain of R2, Discrete and Continuous Dynamical Systems. Series S, Volume 12 (2019) no. 2, pp. 171-188 | DOI:10.3934/dcdss.2019012 | Zbl:1414.35090
  • Imed Bachar; Habib Mâagli; Said Mesloub Existence and global asymptotic behavior of singular positive solutions for radial Laplacian, Journal of Function Spaces, Volume 2019 (2019), p. 9 (Id/No 3572132) | DOI:10.1155/2019/3572132 | Zbl:1415.34054
  • Dongsheng Li; Shanshan Ma Existence and boundary behavior of solutions of Hessian equations with singular right-hand sides, Journal of Functional Analysis, Volume 276 (2019) no. 10, pp. 2969-2989 | DOI:10.1016/j.jfa.2019.02.018 | Zbl:1411.35065
  • Shanshan Ma; Dongsheng Li Existence and boundary asymptotic behavior of large solutions of Hessian equations, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 187 (2019), pp. 1-17 | DOI:10.1016/j.na.2019.03.021 | Zbl:1427.35059
  • Haitao Wan; Xiaohong Li; Bo Li; Yongxiu Shi Entire large solutions to semilinear elliptic equations with rapidly or regularly varying nonlinearities, Nonlinear Analysis. Real World Applications, Volume 45 (2019), pp. 506-530 | DOI:10.1016/j.nonrwa.2018.07.021 | Zbl:1412.35148
  • Bo Li; Haitao Wan Blow-up rates and uniqueness of entire large solutions to a semilinear elliptic equation with nonlinear convection term, Boundary Value Problems, Volume 2018 (2018), p. 14 (Id/No 179) | DOI:10.1186/s13661-018-1101-0 | Zbl:1499.35269
  • Xianzhong Zeng; Yonggeng Gu Existence and the dynamical behaviors of the positive solutions for a ratio-dependent predator-prey system with the crowing term and the weak growth, Journal of Differential Equations, Volume 264 (2018) no. 5, pp. 3559-3595 | DOI:10.1016/j.jde.2017.11.026 | Zbl:1401.35193
  • Haitao Wan; Yongxiu Shi The second expansion of the unique vanishing at infinity solution to a singular elliptic equation, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 171 (2018), pp. 238-270 | DOI:10.1016/j.na.2018.02.007 | Zbl:1392.35097
  • Yujuan Chen Boundary behavior for the large viscosity solutions to equations involving the infinity-Laplacian, Applicable Analysis, Volume 96 (2017) no. 12, p. 2065 | DOI:10.1080/00036811.2016.1202405
  • Ling Mi Blow-up rates of large solutions for infinity Laplace equations, Applied Mathematics and Computation, Volume 298 (2017), pp. 36-44 | DOI:10.1016/j.amc.2016.11.007 | Zbl:1411.35119
  • H. Mâagli; Z. Zine El Abidine Existence and asymptotic behaviour of positive solutions for semilinear polyharmonic coupled systems, Complex Variables and Elliptic Equations, Volume 62 (2017) no. 11, p. 1665 | DOI:10.1080/17476933.2017.1286332
  • Imed Bachar; Habib Maagli; Vicenţiu Rădulescu Singular solutions of a nonlinear elliptic equation in a punctured domain, Electronic Journal of Qualitative Theory of Differential Equations (2017) no. 94, p. 1 | DOI:10.14232/ejqtde.2017.1.94
  • Haitao Wan Asymptotic behavior of entire large solutions to semilinear elliptic equations, Journal of Mathematical Analysis and Applications, Volume 448 (2017) no. 1, pp. 44-59 | DOI:10.1016/j.jmaa.2016.10.071 | Zbl:1358.35041
  • Shijie Qi; Peihao Zhao Large solutions for a semilinear elliptic problem with sign-changing weights, Journal of Mathematical Analysis and Applications, Volume 452 (2017) no. 2, pp. 1310-1331 | DOI:10.1016/j.jmaa.2017.03.065 | Zbl:1373.35139
  • Dongsheng Li; Shanshan Ma Boundary behavior of solutions of Monge-Ampère equations with singular righthand sides, Journal of Mathematical Analysis and Applications, Volume 454 (2017) no. 1, pp. 79-93 | DOI:10.1016/j.jmaa.2017.04.074 | Zbl:1386.35128
  • Juping Ji; Bo Li; Guanghui Zhang Multiplicity of positive solutions to boundary blow-up problem with variable exponent and sign-changing weights, Mathematical Methods in the Applied Sciences, Volume 40 (2017) no. 6, pp. 2057-2070 | DOI:10.1002/mma.4119 | Zbl:1368.35143
  • Ramzi S. Alsaedi Global behavior of positive solutions of a generalized Lane-Emden system of nonlinear differential equations, Mediterranean Journal of Mathematics, Volume 14 (2017) no. 2, p. 14 (Id/No 81) | DOI:10.1007/s00009-017-0889-7 | Zbl:1369.34037
  • Zhijun Zhang Boundary behavior of large solutions to p-Laplacian elliptic equations, Nonlinear Analysis. Real World Applications, Volume 33 (2017), pp. 40-57 | DOI:10.1016/j.nonrwa.2016.05.008 | Zbl:1352.35064
  • Haitao Wan Global asymptotic behavior of large solutions for a class of semilinear elliptic problems, Wuhan University Journal of Natural Sciences (WUJNS), Volume 22 (2017) no. 1, pp. 29-37 | DOI:10.1007/s11859-017-1213-x | Zbl:1389.35175
  • Xianzhong ZENG; Yonggeng GU Persistence and the global dynamics of the positive solutions for a ratio-dependent predator-prey system with a crowding term in the prey equation, Acta Mathematica Scientia, Volume 36 (2016) no. 3, p. 689 | DOI:10.1016/s0252-9602(16)30032-7
  • Imed Bachar; Habib Mâagli Existence and global asymptotic behavior of positive solutions for combined second-order differential equations on the half-line, Advances in Nonlinear Analysis, Volume 5 (2016) no. 3, pp. 205-222 | DOI:10.1515/anona-2015-0078 | Zbl:1346.34020
  • Zhijun Zhang Boundary behavior of large solutions for semilinear elliptic equations with weights, Asymptotic Analysis, Volume 96 (2016) no. 3-4, pp. 309-329 | DOI:10.3233/asy-151345 | Zbl:1354.35049
  • Lin-Lin Wang; Yong-Hong Fan On the Keller-Osserman conjecture in one dimensional case, Boundary Value Problems, Volume 2016 (2016), p. 10 (Id/No 162) | DOI:10.1186/s13661-016-0667-7 | Zbl:1362.34043
  • Ling Mi Existence and boundary behavior of solutions to p-Laplacian elliptic equations, Boundary Value Problems, Volume 2016 (2016), p. 15 (Id/No 119) | DOI:10.1186/s13661-016-0627-2 | Zbl:1383.35096
  • Mingxin Wang; Peter Y. H. Pang; Yujuan Chen Initial and boundary blow-up problem for p-Laplacian parabolic equation with general absorption, Journal of Dynamics and Differential Equations, Volume 28 (2016) no. 1, pp. 253-279 | DOI:10.1007/s10884-014-9407-9 | Zbl:1334.35173
  • Haitao Wan The second order expansion of boundary blow-up solutions for infinity-Laplacian equations, Journal of Mathematical Analysis and Applications, Volume 436 (2016) no. 1, pp. 179-202 | DOI:10.1016/j.jmaa.2015.11.054 | Zbl:1331.35059
  • Majda Chaieb; Abdelwaheb Dhifli; Samia Zermani Existence and asymptotic behavior of positive solutions of a semilinear elliptic system in a bounded domain, Opuscula Mathematica, Volume 36 (2016) no. 3, pp. 315-336 | DOI:10.7494/opmath.2016.36.3.315 | Zbl:1346.31003
  • Haitao Wan The exact asymptotic behavior of boundary blow-up solutions to infinity Laplacian equations, ZAMP. Zeitschrift für angewandte Mathematik und Physik, Volume 67 (2016) no. 4, p. 14 (Id/No 97) | DOI:10.1007/s00033-016-0694-3 | Zbl:1366.35046
  • Z. Fu; B. Liu; L. Mi Blow-up rate of the unique solution for a class of one-dimensional equations with a weakly superlinear nonlinearity, Acta Mathematica Hungarica, Volume 145 (2015) no. 2, pp. 309-319 | DOI:10.1007/s10474-015-0483-z | Zbl:1363.34100
  • Ling Mi; Bin Liu Second order expansion for the solution to a singular Dirichlet problem, Applied Mathematics and Computation, Volume 270 (2015), pp. 401-412 | DOI:10.1016/j.amc.2015.08.036 | Zbl:1410.35048
  • Ling Mi The exact asymptotic behavior of blow-up solutions to a highly degenerate elliptic problem, Boundary Value Problems, Volume 2015 (2015), p. 12 (Id/No 216) | DOI:10.1186/s13661-015-0482-6 | Zbl:1341.35076
  • Yun-Feng Ma; Zhong Bo Fang The first and second expansion of large solutions for quasilinear elliptic equations with weight functions, Boundary Value Problems, Volume 2015 (2015), p. 19 (Id/No 234) | DOI:10.1186/s13661-015-0498-y | Zbl:1332.35120
  • Ling Mi Asymptotic behavior for the unique positive solution to a singular elliptic problem, Communications on Pure and Applied Analysis, Volume 14 (2015) no. 3, pp. 1053-1072 | DOI:10.3934/cpaa.2015.14.1053 | Zbl:1314.35033
  • Zhijun Zhang Boundary behavior of large solutions to the Monge-Ampère equations with weights, Journal of Differential Equations, Volume 259 (2015) no. 5, pp. 2080-2100 | DOI:10.1016/j.jde.2015.03.040 | Zbl:1318.35061
  • Ling Mi Boundary behavior for the solutions to Dirichlet problems involving the infinity-Laplacian, Journal of Mathematical Analysis and Applications, Volume 425 (2015) no. 2, pp. 1061-1070 | DOI:10.1016/j.jmaa.2014.12.070 | Zbl:1312.35071
  • Ramzi Alsaedi; Habib Mâagli; Noureddine Zeddini Existence and global behavior of positive solution for semilinear problems with boundary blow-up, Journal of Mathematical Analysis and Applications, Volume 425 (2015) no. 2, pp. 818-826 | DOI:10.1016/j.jmaa.2014.12.066 | Zbl:1312.35094
  • Haitao Wan The second order expansion of solutions to a singular Dirichlet boundary value problem, Journal of Mathematical Analysis and Applications, Volume 427 (2015) no. 1, p. 140 | DOI:10.1016/j.jmaa.2015.02.031
  • Zhijun Zhang; Bo Li; Xiaohong Li The exact boundary behavior of solutions to singular nonlinear Lane-Emden-Fowler type boundary value problems, Nonlinear Analysis. Real World Applications, Volume 21 (2015), pp. 34-52 | DOI:10.1016/j.nonrwa.2014.06.007 | Zbl:1302.35183
  • Xianzhong Zeng; Jianchen Zhang; Yonggeng Gu Uniqueness and stability of positive steady state solutions for a ratio-dependent predator-prey system with a crowding term in the prey equation, Nonlinear Analysis. Real World Applications, Volume 24 (2015), pp. 163-174 | DOI:10.1016/j.nonrwa.2015.02.005 | Zbl:1327.35160
  • Ramzi Alsaedi; Habib Mâagli; Noureddine Zeddini Exact behavior of the unique positive solution to some singular elliptic problem in exterior domains, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 119 (2015), pp. 186-198 | DOI:10.1016/j.na.2014.09.018 | Zbl:1317.31014
  • Zhijun Zhang Boundary behavior of large viscosity solutions to infinity Laplace equations, ZAMP. Zeitschrift für angewandte Mathematik und Physik, Volume 66 (2015) no. 4, pp. 1453-1472 | DOI:10.1007/s00033-014-0470-1 | Zbl:1321.35049
  • Nedra Belhaj Rhouma; Amor Drissi Existence of blow-up solutions of semilinear elliptic problems, Differential Equations and Dynamical Systems, Volume 22 (2014) no. 1, pp. 51-72 | DOI:10.1007/s12591-013-0162-x | Zbl:1323.35150
  • Wei Wang; Hanzhao Gong; Sining Zheng Asymptotic estimates of boundary blow-up solutions to the infinity Laplace equations, Journal of Differential Equations, Volume 256 (2014) no. 11, pp. 3721-3742 | DOI:10.1016/j.jde.2014.02.018 | Zbl:1287.35038
  • Zhijun Zhang; Bo Li; Xiaohong Li The exact boundary behavior of the unique solution to a singular Dirichlet problem with a nonlinear convection term, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 108 (2014), pp. 14-28 | DOI:10.1016/j.na.2014.05.007 | Zbl:1295.35234
  • Yujuan Chen; Yueping Zhu; Ruiya Hao Large solutions with a power nonlinearity given by a variable exponent for p-Laplacian equations, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 110 (2014), pp. 130-140 | DOI:10.1016/j.na.2014.08.003 | Zbl:1302.35187
  • Yujuan Chen; Peter Y. H. Pang; Mingxin Wang Blow-up rates and uniqueness of large solutions for elliptic equations with nonlinear gradient term and singular or degenerate weights, Manuscripta Mathematica, Volume 141 (2013) no. 1-2, pp. 171-193 | DOI:10.1007/s00229-012-0567-9 | Zbl:1268.35033
  • Noureddine Zeddini; Ramzi Alsaedi; Habib Mâagli Exact boundary behavior of the unique positive solution to some singular elliptic problems, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 89 (2013), pp. 146-156 | DOI:10.1016/j.na.2013.05.006 | Zbl:1281.31006
  • Yujuan Chen; Mingxin Wang Boundary blow-up solutions of -Laplacian elliptic equations with a weakly superlinear nonlinearity, Nonlinear Analysis: Real World Applications, Volume 14 (2013) no. 3, p. 1527 | DOI:10.1016/j.nonrwa.2012.10.016
  • Ling Mi; Bin Liu Boundary behavior of large solutions to elliptic equations with nonlinear gradient terms, ZAMP. Zeitschrift für angewandte Mathematik und Physik, Volume 64 (2013) no. 4, pp. 1283-1304 | DOI:10.1007/s00033-012-0288-7 | Zbl:1282.35173
  • Chunlian Liu; Zuodong Yang Boundary blow-up quasilinear elliptic problems with nonlinear gradient terms, Complex Variables and Elliptic Equations, Volume 57 (2012) no. 6, pp. 687-704 | DOI:10.1080/17476933.2010.534143 | Zbl:1253.35045
  • Giovanni Porru; Claudia Anedda Boundary estimates for solutions of weighted semilinear elliptic equations, Discrete and Continuous Dynamical Systems, Volume 32 (2012) no. 11, p. 3801 | DOI:10.3934/dcds.2012.32.3801
  • Salomón Alarcón; Jorge García-Melián; Alexander Quaas Keller-Osserman type conditions for some elliptic problems with gradient terms, Journal of Differential Equations, Volume 252 (2012) no. 2, pp. 886-914 | DOI:10.1016/j.jde.2011.09.033 | Zbl:1235.35096
  • Zhijun Zhang; Bo Li The boundary behavior of the unique solution to a singular Dirichlet problem, Journal of Mathematical Analysis and Applications, Volume 391 (2012) no. 1, pp. 278-290 | DOI:10.1016/j.jmaa.2012.02.010 | Zbl:1241.35086
  • Dušan Repovš Asymptotics for singular solutions of quasilinear elliptic equations with an absorption term, Journal of Mathematical Analysis and Applications, Volume 395 (2012) no. 1, pp. 78-85 | DOI:10.1016/j.jmaa.2012.05.017 | Zbl:1250.35109
  • Ling Mi; Yanfeng Qi; Bin Liu Blow-up rate of the unique solution for a class of one-dimensional p-Laplacian equations, Nonlinear Analysis. Real World Applications, Volume 13 (2012) no. 6, pp. 2734-2746 | DOI:10.1016/j.nonrwa.2012.03.015 | Zbl:1266.34053
  • Ling Mi; Bin Liu Second order expansion for blowup solutions of semilinear elliptic problems, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 75 (2012) no. 4, pp. 2591-2613 | DOI:10.1016/j.na.2011.11.002 | Zbl:1253.35057
  • Huiling Li; Peter Y. H. Pang; Mingxin Wang Boundary blow-up solutions of p-Laplacian elliptic equations with lower order terms, ZAMP. Zeitschrift für angewandte Mathematik und Physik, Volume 63 (2012) no. 2, pp. 295-311 | DOI:10.1007/s00033-011-0175-7 | Zbl:1242.35063
  • Zong Ming Guo; Yao Yong Yan Transition-layer solutions of quasilinear elliptic boundary blow-up problems and Dirichlet problems, Acta Mathematica Sinica. English Series, Volume 27 (2011) no. 11, pp. 2177-2190 | DOI:10.1007/s10114-011-9327-0 | Zbl:1234.35025
  • Shuibo Huang; Qiaoyu Tian Boundary behaviour of explosive solution to quasilinear elliptic problems with nonlinear gradient terms, Applicable Analysis, Volume 90 (2011) no. 9, p. 1391 | DOI:10.1080/00036811.2010.524159
  • Dušan Repovš Singular solutions of perturbed logistic-type equations, Applied Mathematics and Computation, Volume 218 (2011) no. 8, pp. 4414-4422 | DOI:10.1016/j.amc.2011.10.018 | Zbl:1239.35161
  • Shuibo Huang; Wan-Tong Li; Qiaoyu Tian; Chunlai Mu Large solution to nonlinear elliptic equation with nonlinear gradient terms, Journal of Differential Equations, Volume 251 (2011) no. 12, pp. 3297-3328 | DOI:10.1016/j.jde.2011.08.031 | Zbl:1231.35068
  • Jorge García-Melián Multiplicity of positive solutions to boundary blow-up elliptic problems with sign-changing weights, Journal of Functional Analysis, Volume 261 (2011) no. 7, pp. 1775-1798 | DOI:10.1016/j.jfa.2011.05.018 | Zbl:1387.35308
  • Shuibo Huang; Qiaoyu Tian Boundary blow-up rates of large solutions for elliptic equations with convection terms, Journal of Mathematical Analysis and Applications, Volume 373 (2011) no. 1, pp. 30-43 | DOI:10.1016/j.jmaa.2010.06.031 | Zbl:1201.35105
  • Zhijun Zhang The second expansion of the solution for a singular elliptic boundary value problem, Journal of Mathematical Analysis and Applications, Volume 381 (2011) no. 2, pp. 922-934 | DOI:10.1016/j.jmaa.2011.04.018 | Zbl:1221.35174
  • Zhijun Zhang The second expansion of large solutions for semilinear elliptic equations, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 74 (2011) no. 11, pp. 3445-3457 | DOI:10.1016/j.na.2011.02.031 | Zbl:1217.35074
  • Jing Mo; Zuodong Yang Boundary asymptotic behavior and uniqueness of large solutions to quasilinear elliptic equations, Computers Mathematics with Applications, Volume 59 (2010) no. 6, pp. 2007-2017 | DOI:10.1016/j.camwa.2009.12.003 | Zbl:1189.35140
  • Zhijun Zhang; Yunjie Ma; Ling Mi; Xiaohong Li Blow-up rates of large solutions for elliptic equations, Journal of Differential Equations, Volume 249 (2010) no. 1, pp. 180-199 | DOI:10.1016/j.jde.2010.02.019 | Zbl:1191.35137
  • Sabrine Gontara; Habib Mâagli; Syrine Masmoudi; Sameh Turki Asymptotic behavior of positive solutions of a singular nonlinear Dirichlet problem, Journal of Mathematical Analysis and Applications, Volume 369 (2010) no. 2, pp. 719-729 | DOI:10.1016/j.jmaa.2010.04.008 | Zbl:1196.35109
  • Zhijun Zhang Boundary behavior of large solutions to semilinear elliptic equations with nonlinear gradient terms, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 73 (2010) no. 10, pp. 3348-3363 | DOI:10.1016/j.na.2010.07.017 | Zbl:1198.35077
  • Huabing Feng; Chengkui Zhong Boundary behavior of solutions for the degenerate logistic type elliptic problem with boundary blow-up, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 73 (2010) no. 10, pp. 3472-3478 | DOI:10.1016/j.na.2009.11.052 | Zbl:1200.35132
  • Shuibo Huang; Qiaoyu Tian; Shengzhi Zhang; Jinhua Xi; Zheng-En Fan The exact blow-up rates of large solutions for semilinear elliptic equations, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 73 (2010) no. 11, pp. 3489-3501 | DOI:10.1016/j.na.2010.06.069 | Zbl:1200.35134
  • Ni Xiang Boundary asymptotical behavior of large solutions to complex Hessian equations, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 73 (2010) no. 12, pp. 3940-3946 | DOI:10.1016/j.na.2010.08.027 | Zbl:1215.32018
  • Yujuan Chen; Mingxin Wang Uniqueness results and asymptotic behavior of solutions with boundary blow-up for logistic-type porous media equations, ZAMP. Zeitschrift für angewandte Mathematik und Physik, Volume 61 (2010) no. 2, pp. 277-292 | DOI:10.1007/s00033-009-0015-1 | Zbl:1273.76395
  • Shuibo Huang; Qiaoyu Tian; Chunlai Mu Asymptotic behavior of large solution to elliptic equation of Bieberbach-Rademacher type with convection terms, Applied Mathematics and Computation, Volume 210 (2009) no. 2, pp. 284-293 | DOI:10.1016/j.amc.2008.12.067 | Zbl:1178.35167
  • Shuibo Huang; Qiaoyu Tian Asymptotic behavior of large solution for boundary blowup problems with non-linear gradient terms, Applied Mathematics and Computation, Volume 215 (2009) no. 8, pp. 3091-3097 | DOI:10.1016/j.amc.2009.10.002 | Zbl:1182.35052
  • Zhifu Xie Uniqueness and blow-up rate of large solutions for elliptic equation Δu=λub(x)h(u), Journal of Differential Equations, Volume 247 (2009) no. 2, pp. 344-363 | DOI:10.1016/j.jde.2009.04.001 | Zbl:1173.35064
  • S. Cano-Casanova; J. López-Gómez Blow-up rates of radially symmetric large solutions, Journal of Mathematical Analysis and Applications, Volume 352 (2009) no. 1, pp. 166-174 | DOI:10.1016/j.jmaa.2008.06.022 | Zbl:1163.35015
  • Zhijun Zhang; Yiming Guo; Huabing Feng Boundary behaviour of the unique solution to a singular Dirichlet problem with a convection term, Journal of Mathematical Analysis and Applications, Volume 352 (2009) no. 1, pp. 77-84 | DOI:10.1016/j.jmaa.2008.01.075 | Zbl:1163.35022
  • Peng Feng Remarks on large solutions of a class of semilinear elliptic equations, Journal of Mathematical Analysis and Applications, Volume 356 (2009) no. 2, pp. 393-404 | DOI:10.1016/j.jmaa.2009.03.021 | Zbl:1167.35017
  • Jorge García-Melián Uniqueness of positive solutions for a boundary blow-up problem, Journal of Mathematical Analysis and Applications, Volume 360 (2009) no. 2, pp. 530-536 | DOI:10.1016/j.jmaa.2009.06.077 | Zbl:1182.35006
  • Shuibo Huang; Qiaoyu Tian Asymptotic behavior of large solutions to p-Laplacian of Bieberbach-Rademacher type, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 71 (2009) no. 11, pp. 5773-5780 | DOI:10.1016/j.na.2009.04.064 | Zbl:1176.35080
  • Wei Dong; Juanfei Li; Lishan Liu Uniqueness of boundary blow-up solutions on unbounded domain of RN, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 71 (2009) no. 12, p. e2118-e2126 | DOI:10.1016/j.na.2009.03.084 | Zbl:1239.35004
  • Sonia Ben Othman; Habib Mâagli; Syrine Masmoudi; Malek Zribi Exact asymptotic behavior near the boundary to the solution for singular nonlinear Dirichlet problems, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 71 (2009) no. 9, pp. 4137-4150 | DOI:10.1016/j.na.2009.02.073 | Zbl:1177.35091
  • Zhang Zhijiun The existence and global optimal asymptotic behaviour of large solutions for a semilinear elliptic problem, Acta Mathematica Scientia, Volume 28 (2008) no. 3, p. 595 | DOI:10.1016/s0252-9602(08)60062-4
  • Zhijun Zhang Asymptotic behavior of the unique solution to a singular elliptic problem with nonlinear convection term and singular weight, Advanced Nonlinear Studies, Volume 8 (2008) no. 2, pp. 391-400 | DOI:10.1515/ans-2008-0209 | Zbl:1168.35370
  • Chunlian Liu; Zuodong Yang Existence of large solutions for a quasilinear elliptic problem via explosive sub-supersolutions, Applied Mathematics and Computation, Volume 199 (2008) no. 2, pp. 414-424 | DOI:10.1016/j.amc.2007.10.009 | Zbl:1141.35025
  • Florica Corina Cîrstea; Cristina Trombetti On the Monge-Ampère equation with boundary blow-up: existence, uniqueness and asymptotics, Calculus of Variations and Partial Differential Equations, Volume 31 (2008) no. 2, pp. 167-186 | DOI:10.1007/s00526-007-0108-7 | Zbl:1148.35022
  • Santiago Cano-Casanova; Julián López-Gómez Existence, uniqueness and blow-up rate of large solutions for a canonical class of one-dimensional problems on the half-line, Journal of Differential Equations, Volume 244 (2008) no. 12, pp. 3180-3203 | DOI:10.1016/j.jde.2007.11.012 | Zbl:1149.34020
  • Jorge García-Melián Large solutions for an elliptic system of quasilinear equations, Journal of Differential Equations, Volume 245 (2008) no. 12, pp. 3735-3752 | DOI:10.1016/j.jde.2008.04.004 | Zbl:1169.35021
  • Zhijun Zhang; Ling Mi; Xiugui Yin Blow-up rate of the unique solution for a class of one-dimensional problems on the half-line, Journal of Mathematical Analysis and Applications, Volume 348 (2008) no. 2, pp. 797-805 | DOI:10.1016/j.jmaa.2008.07.074 | Zbl:1176.34033
  • Zhijun Zhang A boundary blow-up elliptic problem with an inhomogeneous term, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 68 (2008) no. 11, pp. 3428-3438 | DOI:10.1016/j.na.2007.03.034 | Zbl:1158.35040
  • Tiancheng Ouyang; Zhifu Xie The exact boundary blow-up rate of large solutions for semilinear elliptic problems, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 68 (2008) no. 9, pp. 2791-2800 | DOI:10.1016/j.na.2007.02.026 | Zbl:1138.35025
  • Chunlian Liu; Zuodong Yang Boundary blow-up quasilinear elliptic problems of the Bieberbach type with nonlinear gradient terms, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 69 (2008) no. 12, pp. 4380-4391 | DOI:10.1016/j.na.2007.10.060 | Zbl:1159.35034
  • Zhijun Zhang Boundary behavior of solutions to some singular elliptic boundary value problems, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 69 (2008) no. 7, pp. 2293-2302 | DOI:10.1016/j.na.2007.08.009 | Zbl:1151.35032
  • Florica Corina Cîrstea; Yihong Du Large solutions of elliptic equations with a weakly superlinear nonlinearity, Journal d'Analyse Mathématique, Volume 103 (2007), pp. 261-277 | DOI:10.1007/s11854-008-0008-6 | Zbl:1186.35059
  • Florica Corina Cîrstea; Yihong Du Asymptotic behavior of solutions of semilinear elliptic equations near an isolated singularity, Journal of Functional Analysis, Volume 250 (2007) no. 2, pp. 317-346 | DOI:10.1016/j.jfa.2007.05.005 | Zbl:1220.35046
  • Ahmed Mohammed Boundary asymptotic and uniqueness of solutions to the p-Laplacian with infinite boundary values, Journal of Mathematical Analysis and Applications, Volume 325 (2007) no. 1, pp. 480-489 | DOI:10.1016/j.jmaa.2006.02.008 | Zbl:1142.35412
  • Jorge García-Melián A remark on uniqueness of large solutions for elliptic systems of competitive type, Journal of Mathematical Analysis and Applications, Volume 331 (2007) no. 1, pp. 608-616 | DOI:10.1016/j.jmaa.2006.09.006 | Zbl:1131.35015
  • Zongming Guo; Junli Shang Remarks on uniqueness of boundary blow-up solutions, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 66 (2007) no. 2, pp. 484-497 | DOI:10.1016/j.na.2005.11.042 | Zbl:1159.35330
  • Zhijun Zhang Boundary blow-up elliptic problems of Bieberbach and Rademacher type with nonlinear gradient terms, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 67 (2007) no. 3, pp. 727-734 | DOI:10.1016/j.na.2006.06.025 | Zbl:1131.35026
  • Jorge García-Melián Uniqueness for boundary blow-up problems with continuous weights, Proceedings of the American Mathematical Society, Volume 135 (2007) no. 9, pp. 2785-2793 | DOI:10.1090/s0002-9939-07-08822-3 | Zbl:1146.35036
  • Vicenţiu D. Rădulescu Singular Phenomena in Nonlinear Elliptic Problems: From Blow-Up Boundary Solutions to Equations with Singular Nonlinearities, Stationary Partial Differential Equations, Volume 4 (2007), p. 485 | DOI:10.1016/s1874-5733(07)80010-6
  • Florica-Corina Cîrstea; Vicenţiu Rădulescu Boundary blow-up in nonlinear elliptic equations of Bieberbach-Rademacher type, Transactions of the American Mathematical Society, Volume 359 (2007) no. 7, pp. 3275-3286 | DOI:10.1090/s0002-9947-07-04107-4 | Zbl:1134.35039
  • Julián López-Gómez Optimal uniqueness theorems and exact blow-up rates of large solutions, Journal of Differential Equations, Volume 224 (2006) no. 2, pp. 385-439 | DOI:10.1016/j.jde.2005.08.008 | Zbl:1208.35036
  • Zongming Guo; Feng Zhou Exact multiplicity for boundary blow-up solutions, Journal of Differential Equations, Volume 228 (2006) no. 2, pp. 486-506 | DOI:10.1016/j.jde.2006.02.012 | Zbl:1139.35345
  • Zhijun Zhang Boundary blow-up elliptic problems with nonlinear gradient terms, Journal of Differential Equations, Volume 228 (2006) no. 2, pp. 661-684 | DOI:10.1016/j.jde.2006.02.003 | Zbl:1130.35063
  • Zongming Guo; J. R. L. Webb Structure of boundary blow-up solutions for quasi-linear elliptic problems. II: Small and intermediate solutions, Journal of Differential Equations, Volume 211 (2005) no. 1, pp. 187-217 | DOI:10.1016/j.jde.2004.06.008 | Zbl:1134.35339
  • Zhijun Zhang The asymptotic behaviour of solutions with blow-up at the boundary for semilinear elliptic problems, Journal of Mathematical Analysis and Applications, Volume 308 (2005) no. 2, pp. 532-540 | DOI:10.1016/j.jmaa.2004.11.029 | Zbl:1160.35417
  • Zhijun Zhang The asymptotic behaviour of the unique solution for the singular Lane-Emden-Fowler equation, Journal of Mathematical Analysis and Applications, Volume 312 (2005) no. 1, pp. 33-43 | DOI:10.1016/j.jmaa.2005.03.023 | Zbl:1165.35377
  • Zhijun Zhang The asymptotic behaviour of solutions with boundary blow-up for semilinear elliptic equations with nonlinear gradient terms, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 62 (2005) no. 6, pp. 1137-1148 | DOI:10.1016/j.na.2005.04.028 | Zbl:1213.35225
  • Julián López-Gómez Metasolutions: Malthus versus Verhulst in Population Dynamics. A Dream of Volterra, Stationary Partial Differential Equations, Volume 2 (2005), p. 211 | DOI:10.1016/s1874-5733(05)80012-9
  • Florica-Corina Cîrstea An extreme variation phenomenon for some nonlinear elliptic problems with boundary blow-up, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 339 (2004) no. 10, pp. 689-694 | DOI:10.1016/j.crma.2004.10.005 | Zbl:1133.35352
  • Florica-Corina Cîrstea; Vicenţiu Rădulescu Extremal singular solutions for degenerate logistic-type equations in anisotropic media, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 339 (2004) no. 2, pp. 119-124 | DOI:10.1016/j.crma.2004.04.025 | Zbl:1101.35034
  • Manuel Delgado; Julián López-Gómez; Antonio Suárez Singular boundary value problems of a porous media logistic equation, Hiroshima Mathematical Journal, Volume 34 (2004) no. 1, pp. 57-80 | DOI:10.32917/hmj/1150998071 | Zbl:1112.35065
  • Yihong Du; Zongming Guo Uniqueness and layer analysis for boundary blow up solutions, Journal de Mathématiques Pures et Appliquées. Neuvième Série, Volume 83 (2004) no. 6, pp. 739-763 | DOI:10.1016/j.matpur.2004.01.006 | Zbl:1081.35032
  • Florica-Corina Cîrstea; Vicenţiu Rădulescu Asymptotics for the blow-up boundary solution of the logistic equation with absorption., Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 336 (2003) no. 3, pp. 231-236 | DOI:10.1016/s1631-073x(03)00027-x | Zbl:1068.35035
  • Marius Ghergu; Vicenţiu D. Rădulescu Bifurcation and asymptotics for the Lane–Emden–Fowler equation., Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 337 (2003) no. 4, pp. 259-264 | DOI:10.1016/s1631-073x(03)00335-2 | Zbl:1073.35087
  • Julián López-Gómez The boundary blow-up rate of large solutions., Journal of Differential Equations, Volume 195 (2003) no. 1, pp. 25-45 | DOI:10.1016/j.jde.2003.06.003 | Zbl:1130.35329

Cité par 149 documents. Sources : Crossref, zbMATH

The research of F. Cı̂rstea was done under the IPRS Programme funded by the Australian Government through DETYA. V. Rădulescu was supported by the P.I.C.S. Research Programme between France and Romania.

Commentaires - Politique