[Unicité de la solution explosant au bord pour équations logistiques avec absorption]
Soit
Let
Publié le :
Florica-Corina Cı̂rstea 1 ; Vicenţiu Rădulescu 2
@article{CRMATH_2002__335_5_447_0, author = {Florica-Corina C{\i}̂rstea and Vicen\c{t}iu R\u{a}dulescu}, title = {Uniqueness of the blow-up boundary solution of logistic equations with absorbtion}, journal = {Comptes Rendus. Math\'ematique}, pages = {447--452}, publisher = {Elsevier}, volume = {335}, number = {5}, year = {2002}, doi = {10.1016/S1631-073X(02)02503-7}, language = {en}, }
TY - JOUR AU - Florica-Corina Cı̂rstea AU - Vicenţiu Rădulescu TI - Uniqueness of the blow-up boundary solution of logistic equations with absorbtion JO - Comptes Rendus. Mathématique PY - 2002 SP - 447 EP - 452 VL - 335 IS - 5 PB - Elsevier DO - 10.1016/S1631-073X(02)02503-7 LA - en ID - CRMATH_2002__335_5_447_0 ER -
Florica-Corina Cı̂rstea; Vicenţiu Rădulescu. Uniqueness of the blow-up boundary solution of logistic equations with absorbtion. Comptes Rendus. Mathématique, Volume 335 (2002) no. 5, pp. 447-452. doi : 10.1016/S1631-073X(02)02503-7. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02503-7/
[1] On the solvability of a semilinear elliptic equation via an associated eigenvalue problem, Math. Z., Volume 221 (1996), pp. 467-493
[2] ‘Large’ solutions of semilinear elliptic equations: existence, uniqueness and asymptotic behavior, J. Anal. Math., Volume 58 (1992), pp. 9-24
[3] F. Cı̂rstea, V. Rădulescu, Solutions with boundary blow-up for a class of nonlinear elliptic problems, Houston J. Math., in press
[4] Existence and uniqueness of blow-up solutions for a class of logistic equations, Commun. Contemp. Math., Volume 4 (2002), pp. 559-586
[5] Blow-up solutions for a class of semilinear elliptic and parabolic equations, SIAM J. Math. Anal., Volume 31 (1999), pp. 1-18
[6] Uniqueness and asymptotic behaviour for solutions of semilinear problems with boundary blow-up, Proc. Amer. Math. Soc., Volume 129 (2001), pp. 3593-3602
[7] On solution of Δu=f(u), Comm. Pure Appl. Math., Volume 10 (1957), pp. 503-510
[8] Partial differential equations invariant under conformal or projective transformations (L. Alhfors, ed.), Contributions to Analysis, Academic Press, New York, 1974, pp. 245-272
[9] Uniqueness and asymptotic behavior of solutions with boundary blow-up for a class of nonlinear elliptic equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 14 (1997), pp. 237-274
[10] On the inequality Δu⩾f(u), Pacific J. Math., Volume 7 (1957), pp. 1641-1647
[11] Regularly Varying Functions, Lecture Notes in Math., 508, Springer-Verlag, Berlin, Heidelberg, 1976
[12] Semilinear elliptic equations with uniform blow-up on the boundary, J. Anal. Math., Volume 59 (1992), pp. 231-250
- Sharp asymptotic expansions of entire large solutions to a class of k-Hessian equations with weights, Advances in Nonlinear Analysis, Volume 14 (2025) no. 1 | DOI:10.1515/anona-2025-0076
- On the large solutions to a class of
-Hessian problems, Advanced Nonlinear Studies, Volume 24 (2024) no. 3, pp. 657-695 | DOI:10.1515/ans-2023-0128 | Zbl:1540.35189 - Nonlinear polyharmonic boundary value problems in the punctured unit ball, Complex Variables and Elliptic Equations, Volume 69 (2024) no. 12, pp. 1982-2004 | DOI:10.1080/17476933.2023.2266681 | Zbl:7948885
- A sufficient and necessary condition for one dimensional boundary blow-up problem with p-Laplace operator, Indian Journal of Pure and Applied Mathematics (2024) | DOI:10.1007/s13226-024-00595-3
- Viscosity solutions to the infinity Laplacian equation with singular nonlinear terms, Journal of the Australian Mathematical Society, Volume 117 (2024) no. 3, pp. 345-374 | DOI:10.1017/s1446788724000041 | Zbl:7962769
- The classical boundary blow-up solutions for a class of Gaussian curvature equations, The Journal of Geometric Analysis, Volume 34 (2024) no. 11, p. 56 (Id/No 336) | DOI:10.1007/s12220-024-01785-5 | Zbl:1547.35303
- Asymptotic estimates of large solutions to the infinity Laplacian equations, ZAMP. Zeitschrift für angewandte Mathematik und Physik, Volume 75 (2024) no. 2, p. 14 (Id/No 71) | DOI:10.1007/s00033-024-02221-y | Zbl:1537.35078
- Viscosity solutions to the infinity Laplacian equation with lower terms, Electronic Journal of Differential Equations, Volume 2023 (2023) no. 01-?? | DOI:10.58997/ejde.2023.42
- Viscosity solutions to the infinity Laplacian equation with lower terms, Electronic Journal of Differential Equations (EJDE), Volume 2023 (2023), p. 23 (Id/No 42) | Zbl:1519.35165
- The optimal global estimates and boundary behavior for large solutions to the
-Hessian equation, Frontiers of Mathematics, Volume 18 (2023) no. 2, pp. 341-383 | DOI:10.1007/s11464-020-0045-8 | Zbl:1526.35164 - Boundary blow-up solutions to equations involving the infinity Laplacian, Journal of the Australian Mathematical Society, Volume 114 (2023) no. 3, pp. 337-358 | DOI:10.1017/s1446788722000131 | Zbl:1514.35186
- Sharp asymptotic analysis of positive solutions of a combined Sturm-Liouville problem, Matematički Vesnik, Volume 75 (2023) no. 1, pp. 58-70 | DOI:10.57016/mv-xfoq5120 | Zbl:7803634
- Uniqueness and stability analysis to a system of nonlocal partial differential equations related to an epidemic model, Mathematical Methods in the Applied Sciences, Volume 46 (2023) no. 8, pp. 8445-8462 | DOI:10.1002/mma.8990 | Zbl:1527.35156
- Boundary behavior of large solutions to the infinity Laplace equations on the half-line, Mathematical Notes, Volume 114 (2023) no. 5, pp. 883-894 | DOI:10.1134/s0001434623110238 | Zbl:1545.34032
- Refined second boundary behavior of the unique strictly convex solution to a singular Monge-Ampère equation, Advances in Nonlinear Analysis, Volume 11 (2022), pp. 321-356 | DOI:10.1515/anona-2022-0199 | Zbl:1479.35505
- Existence and asymptotic properties of singular solutions of nonlinear elliptic equations in
, Boundary Value Problems, Volume 2022 (2022), p. 19 (Id/No 4) | DOI:10.1186/s13661-022-01584-3 | Zbl:1497.35210 - Pointwise boundary behavior of large solutions to
-Laplacian equations, Rocky Mountain Journal of Mathematics, Volume 52 (2022) no. 3, pp. 1047-1061 | DOI:10.1216/rmj.2022.52.1047 | Zbl:1492.35050 - The exact asymptotic behavior of large solutions to a class of quasilinear elliptic equations with weights, Acta Mathematica Sinica. Chinese Series, Volume 64 (2021) no. 4, pp. 551-568 | Zbl:1524.35087
- On the critical behavior for inhomogeneous wave inequalities with Hardy potential in an exterior domain, Advances in Nonlinear Analysis, Volume 10 (2021), pp. 1267-1283 | DOI:10.1515/anona-2020-0181 | Zbl:1470.35443
- Boundary behavior of large solutions to a class of Hessian equations, Asymptotic Analysis, Volume 125 (2021) no. 1-2, pp. 187-202 | DOI:10.3233/asy-201656 | Zbl:1486.35191
- Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case, Electronic Research Archive, Volume 29 (2021) no. 3, pp. 2359-2373 | DOI:10.3934/era.2020119 | Zbl:1466.35230
- Combined effects in singular elliptic problems in punctured domain, Journal of Function Spaces, Volume 2021 (2021), p. 10 (Id/No 6630457) | DOI:10.1155/2021/6630457 | Zbl:1459.35207
- Entire large solutions to the
-Hessian equations with weights: existence, uniqueness and asymptotic behavior, Journal of Mathematical Analysis and Applications, Volume 503 (2021) no. 1, p. 24 (Id/No 125301) | DOI:10.1016/j.jmaa.2021.125301 | Zbl:1468.35078 - Large solutions to elliptic systems of
-Laplacian equations, Mathematical Notes, Volume 109 (2021) no. 6, pp. 971-979 | DOI:10.1134/s000143462105031x | Zbl:1468.35058 - Optimal global asymptotic behaviour of the solution to a class of singular Dirichlet problems, Proceedings of the Royal Society of Edinburgh. Section A. Mathematics, Volume 151 (2021) no. 3, pp. 1116-1134 | DOI:10.1017/prm.2020.52 | Zbl:1466.35220
- Existence and uniqueness of the positive steady state solution for a Lotka-Volterra predator-prey model with a crowding term, Acta Mathematica Scientia. Series B. (English Edition), Volume 40 (2020) no. 6, pp. 1961-1980 | DOI:10.1007/s10473-020-0622-7 | Zbl:1499.35252
- Existence and uniqueness of nontrivial radial solutions for
-Hessian equations, Journal of Mathematical Analysis and Applications, Volume 492 (2020) no. 1, p. 19 (Id/No 124439) | DOI:10.1016/j.jmaa.2020.124439 | Zbl:1460.35149 - Exact boundary behavior of large solutions to semilinear elliptic equations with a nonlinear gradient term, Science China. Mathematics, Volume 63 (2020) no. 3, pp. 559-574 | DOI:10.1007/s11425-017-9275-y | Zbl:1437.35364
- Large solutions to non-divergence structure semilinear elliptic equations with inhomogeneous term, Advances in Nonlinear Analysis, Volume 8 (2019), pp. 517-532 | DOI:10.1515/anona-2017-0065 | Zbl:1419.35045
- Positive solutions of semilinear problems in an exterior domain of
, Boundary Value Problems, Volume 2019 (2019), p. 24 (Id/No 65) | DOI:10.1186/s13661-019-1178-0 | Zbl:1524.35266 - Asymptotic boundary estimates for solutions to the
-Laplacian with infinite boundary values, Boundary Value Problems, Volume 2019 (2019), p. 27 (Id/No 66) | DOI:10.1186/s13661-019-1179-z | Zbl:1524.35268 - Singular solutions of a nonlinear equation in a punctured domain of
, Discrete and Continuous Dynamical Systems. Series S, Volume 12 (2019) no. 2, pp. 171-188 | DOI:10.3934/dcdss.2019012 | Zbl:1414.35090 - Existence and global asymptotic behavior of singular positive solutions for radial Laplacian, Journal of Function Spaces, Volume 2019 (2019), p. 9 (Id/No 3572132) | DOI:10.1155/2019/3572132 | Zbl:1415.34054
- Existence and boundary behavior of solutions of Hessian equations with singular right-hand sides, Journal of Functional Analysis, Volume 276 (2019) no. 10, pp. 2969-2989 | DOI:10.1016/j.jfa.2019.02.018 | Zbl:1411.35065
- Existence and boundary asymptotic behavior of large solutions of Hessian equations, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 187 (2019), pp. 1-17 | DOI:10.1016/j.na.2019.03.021 | Zbl:1427.35059
- Entire large solutions to semilinear elliptic equations with rapidly or regularly varying nonlinearities, Nonlinear Analysis. Real World Applications, Volume 45 (2019), pp. 506-530 | DOI:10.1016/j.nonrwa.2018.07.021 | Zbl:1412.35148
- Blow-up rates and uniqueness of entire large solutions to a semilinear elliptic equation with nonlinear convection term, Boundary Value Problems, Volume 2018 (2018), p. 14 (Id/No 179) | DOI:10.1186/s13661-018-1101-0 | Zbl:1499.35269
- Existence and the dynamical behaviors of the positive solutions for a ratio-dependent predator-prey system with the crowing term and the weak growth, Journal of Differential Equations, Volume 264 (2018) no. 5, pp. 3559-3595 | DOI:10.1016/j.jde.2017.11.026 | Zbl:1401.35193
- The second expansion of the unique vanishing at infinity solution to a singular elliptic equation, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 171 (2018), pp. 238-270 | DOI:10.1016/j.na.2018.02.007 | Zbl:1392.35097
- Boundary behavior for the large viscosity solutions to equations involving the infinity-Laplacian, Applicable Analysis, Volume 96 (2017) no. 12, p. 2065 | DOI:10.1080/00036811.2016.1202405
- Blow-up rates of large solutions for infinity Laplace equations, Applied Mathematics and Computation, Volume 298 (2017), pp. 36-44 | DOI:10.1016/j.amc.2016.11.007 | Zbl:1411.35119
- Existence and asymptotic behaviour of positive solutions for semilinear polyharmonic coupled systems, Complex Variables and Elliptic Equations, Volume 62 (2017) no. 11, p. 1665 | DOI:10.1080/17476933.2017.1286332
- Singular solutions of a nonlinear elliptic equation in a punctured domain, Electronic Journal of Qualitative Theory of Differential Equations (2017) no. 94, p. 1 | DOI:10.14232/ejqtde.2017.1.94
- Asymptotic behavior of entire large solutions to semilinear elliptic equations, Journal of Mathematical Analysis and Applications, Volume 448 (2017) no. 1, pp. 44-59 | DOI:10.1016/j.jmaa.2016.10.071 | Zbl:1358.35041
- Large solutions for a semilinear elliptic problem with sign-changing weights, Journal of Mathematical Analysis and Applications, Volume 452 (2017) no. 2, pp. 1310-1331 | DOI:10.1016/j.jmaa.2017.03.065 | Zbl:1373.35139
- Boundary behavior of solutions of Monge-Ampère equations with singular righthand sides, Journal of Mathematical Analysis and Applications, Volume 454 (2017) no. 1, pp. 79-93 | DOI:10.1016/j.jmaa.2017.04.074 | Zbl:1386.35128
- Multiplicity of positive solutions to boundary blow-up problem with variable exponent and sign-changing weights, Mathematical Methods in the Applied Sciences, Volume 40 (2017) no. 6, pp. 2057-2070 | DOI:10.1002/mma.4119 | Zbl:1368.35143
- Global behavior of positive solutions of a generalized Lane-Emden system of nonlinear differential equations, Mediterranean Journal of Mathematics, Volume 14 (2017) no. 2, p. 14 (Id/No 81) | DOI:10.1007/s00009-017-0889-7 | Zbl:1369.34037
- Boundary behavior of large solutions to
-Laplacian elliptic equations, Nonlinear Analysis. Real World Applications, Volume 33 (2017), pp. 40-57 | DOI:10.1016/j.nonrwa.2016.05.008 | Zbl:1352.35064 - Global asymptotic behavior of large solutions for a class of semilinear elliptic problems, Wuhan University Journal of Natural Sciences (WUJNS), Volume 22 (2017) no. 1, pp. 29-37 | DOI:10.1007/s11859-017-1213-x | Zbl:1389.35175
- Persistence and the global dynamics of the positive solutions for a ratio-dependent predator-prey system with a crowding term in the prey equation, Acta Mathematica Scientia, Volume 36 (2016) no. 3, p. 689 | DOI:10.1016/s0252-9602(16)30032-7
- Existence and global asymptotic behavior of positive solutions for combined second-order differential equations on the half-line, Advances in Nonlinear Analysis, Volume 5 (2016) no. 3, pp. 205-222 | DOI:10.1515/anona-2015-0078 | Zbl:1346.34020
- Boundary behavior of large solutions for semilinear elliptic equations with weights, Asymptotic Analysis, Volume 96 (2016) no. 3-4, pp. 309-329 | DOI:10.3233/asy-151345 | Zbl:1354.35049
- On the Keller-Osserman conjecture in one dimensional case, Boundary Value Problems, Volume 2016 (2016), p. 10 (Id/No 162) | DOI:10.1186/s13661-016-0667-7 | Zbl:1362.34043
- Existence and boundary behavior of solutions to
-Laplacian elliptic equations, Boundary Value Problems, Volume 2016 (2016), p. 15 (Id/No 119) | DOI:10.1186/s13661-016-0627-2 | Zbl:1383.35096 - Initial and boundary blow-up problem for
-Laplacian parabolic equation with general absorption, Journal of Dynamics and Differential Equations, Volume 28 (2016) no. 1, pp. 253-279 | DOI:10.1007/s10884-014-9407-9 | Zbl:1334.35173 - The second order expansion of boundary blow-up solutions for infinity-Laplacian equations, Journal of Mathematical Analysis and Applications, Volume 436 (2016) no. 1, pp. 179-202 | DOI:10.1016/j.jmaa.2015.11.054 | Zbl:1331.35059
- Existence and asymptotic behavior of positive solutions of a semilinear elliptic system in a bounded domain, Opuscula Mathematica, Volume 36 (2016) no. 3, pp. 315-336 | DOI:10.7494/opmath.2016.36.3.315 | Zbl:1346.31003
- The exact asymptotic behavior of boundary blow-up solutions to infinity Laplacian equations, ZAMP. Zeitschrift für angewandte Mathematik und Physik, Volume 67 (2016) no. 4, p. 14 (Id/No 97) | DOI:10.1007/s00033-016-0694-3 | Zbl:1366.35046
- Blow-up rate of the unique solution for a class of one-dimensional equations with a weakly superlinear nonlinearity, Acta Mathematica Hungarica, Volume 145 (2015) no. 2, pp. 309-319 | DOI:10.1007/s10474-015-0483-z | Zbl:1363.34100
- Second order expansion for the solution to a singular Dirichlet problem, Applied Mathematics and Computation, Volume 270 (2015), pp. 401-412 | DOI:10.1016/j.amc.2015.08.036 | Zbl:1410.35048
- The exact asymptotic behavior of blow-up solutions to a highly degenerate elliptic problem, Boundary Value Problems, Volume 2015 (2015), p. 12 (Id/No 216) | DOI:10.1186/s13661-015-0482-6 | Zbl:1341.35076
- The first and second expansion of large solutions for quasilinear elliptic equations with weight functions, Boundary Value Problems, Volume 2015 (2015), p. 19 (Id/No 234) | DOI:10.1186/s13661-015-0498-y | Zbl:1332.35120
- Asymptotic behavior for the unique positive solution to a singular elliptic problem, Communications on Pure and Applied Analysis, Volume 14 (2015) no. 3, pp. 1053-1072 | DOI:10.3934/cpaa.2015.14.1053 | Zbl:1314.35033
- Boundary behavior of large solutions to the Monge-Ampère equations with weights, Journal of Differential Equations, Volume 259 (2015) no. 5, pp. 2080-2100 | DOI:10.1016/j.jde.2015.03.040 | Zbl:1318.35061
- Boundary behavior for the solutions to Dirichlet problems involving the infinity-Laplacian, Journal of Mathematical Analysis and Applications, Volume 425 (2015) no. 2, pp. 1061-1070 | DOI:10.1016/j.jmaa.2014.12.070 | Zbl:1312.35071
- Existence and global behavior of positive solution for semilinear problems with boundary blow-up, Journal of Mathematical Analysis and Applications, Volume 425 (2015) no. 2, pp. 818-826 | DOI:10.1016/j.jmaa.2014.12.066 | Zbl:1312.35094
- The second order expansion of solutions to a singular Dirichlet boundary value problem, Journal of Mathematical Analysis and Applications, Volume 427 (2015) no. 1, p. 140 | DOI:10.1016/j.jmaa.2015.02.031
- The exact boundary behavior of solutions to singular nonlinear Lane-Emden-Fowler type boundary value problems, Nonlinear Analysis. Real World Applications, Volume 21 (2015), pp. 34-52 | DOI:10.1016/j.nonrwa.2014.06.007 | Zbl:1302.35183
- Uniqueness and stability of positive steady state solutions for a ratio-dependent predator-prey system with a crowding term in the prey equation, Nonlinear Analysis. Real World Applications, Volume 24 (2015), pp. 163-174 | DOI:10.1016/j.nonrwa.2015.02.005 | Zbl:1327.35160
- Exact behavior of the unique positive solution to some singular elliptic problem in exterior domains, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 119 (2015), pp. 186-198 | DOI:10.1016/j.na.2014.09.018 | Zbl:1317.31014
- Boundary behavior of large viscosity solutions to infinity Laplace equations, ZAMP. Zeitschrift für angewandte Mathematik und Physik, Volume 66 (2015) no. 4, pp. 1453-1472 | DOI:10.1007/s00033-014-0470-1 | Zbl:1321.35049
- Existence of blow-up solutions of semilinear elliptic problems, Differential Equations and Dynamical Systems, Volume 22 (2014) no. 1, pp. 51-72 | DOI:10.1007/s12591-013-0162-x | Zbl:1323.35150
- Asymptotic estimates of boundary blow-up solutions to the infinity Laplace equations, Journal of Differential Equations, Volume 256 (2014) no. 11, pp. 3721-3742 | DOI:10.1016/j.jde.2014.02.018 | Zbl:1287.35038
- The exact boundary behavior of the unique solution to a singular Dirichlet problem with a nonlinear convection term, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 108 (2014), pp. 14-28 | DOI:10.1016/j.na.2014.05.007 | Zbl:1295.35234
- Large solutions with a power nonlinearity given by a variable exponent for
-Laplacian equations, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 110 (2014), pp. 130-140 | DOI:10.1016/j.na.2014.08.003 | Zbl:1302.35187 - Blow-up rates and uniqueness of large solutions for elliptic equations with nonlinear gradient term and singular or degenerate weights, Manuscripta Mathematica, Volume 141 (2013) no. 1-2, pp. 171-193 | DOI:10.1007/s00229-012-0567-9 | Zbl:1268.35033
- Exact boundary behavior of the unique positive solution to some singular elliptic problems, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 89 (2013), pp. 146-156 | DOI:10.1016/j.na.2013.05.006 | Zbl:1281.31006
- Boundary blow-up solutions of -Laplacian elliptic equations with a weakly superlinear nonlinearity, Nonlinear Analysis: Real World Applications, Volume 14 (2013) no. 3, p. 1527 | DOI:10.1016/j.nonrwa.2012.10.016
- Boundary behavior of large solutions to elliptic equations with nonlinear gradient terms, ZAMP. Zeitschrift für angewandte Mathematik und Physik, Volume 64 (2013) no. 4, pp. 1283-1304 | DOI:10.1007/s00033-012-0288-7 | Zbl:1282.35173
- Boundary blow-up quasilinear elliptic problems with nonlinear gradient terms, Complex Variables and Elliptic Equations, Volume 57 (2012) no. 6, pp. 687-704 | DOI:10.1080/17476933.2010.534143 | Zbl:1253.35045
- Boundary estimates for solutions of weighted semilinear elliptic equations, Discrete and Continuous Dynamical Systems, Volume 32 (2012) no. 11, p. 3801 | DOI:10.3934/dcds.2012.32.3801
- Keller-Osserman type conditions for some elliptic problems with gradient terms, Journal of Differential Equations, Volume 252 (2012) no. 2, pp. 886-914 | DOI:10.1016/j.jde.2011.09.033 | Zbl:1235.35096
- The boundary behavior of the unique solution to a singular Dirichlet problem, Journal of Mathematical Analysis and Applications, Volume 391 (2012) no. 1, pp. 278-290 | DOI:10.1016/j.jmaa.2012.02.010 | Zbl:1241.35086
- Asymptotics for singular solutions of quasilinear elliptic equations with an absorption term, Journal of Mathematical Analysis and Applications, Volume 395 (2012) no. 1, pp. 78-85 | DOI:10.1016/j.jmaa.2012.05.017 | Zbl:1250.35109
- Blow-up rate of the unique solution for a class of one-dimensional
-Laplacian equations, Nonlinear Analysis. Real World Applications, Volume 13 (2012) no. 6, pp. 2734-2746 | DOI:10.1016/j.nonrwa.2012.03.015 | Zbl:1266.34053 - Second order expansion for blowup solutions of semilinear elliptic problems, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 75 (2012) no. 4, pp. 2591-2613 | DOI:10.1016/j.na.2011.11.002 | Zbl:1253.35057
- Boundary blow-up solutions of
-Laplacian elliptic equations with lower order terms, ZAMP. Zeitschrift für angewandte Mathematik und Physik, Volume 63 (2012) no. 2, pp. 295-311 | DOI:10.1007/s00033-011-0175-7 | Zbl:1242.35063 - Transition-layer solutions of quasilinear elliptic boundary blow-up problems and Dirichlet problems, Acta Mathematica Sinica. English Series, Volume 27 (2011) no. 11, pp. 2177-2190 | DOI:10.1007/s10114-011-9327-0 | Zbl:1234.35025
- Boundary behaviour of explosive solution to quasilinear elliptic problems with nonlinear gradient terms, Applicable Analysis, Volume 90 (2011) no. 9, p. 1391 | DOI:10.1080/00036811.2010.524159
- Singular solutions of perturbed logistic-type equations, Applied Mathematics and Computation, Volume 218 (2011) no. 8, pp. 4414-4422 | DOI:10.1016/j.amc.2011.10.018 | Zbl:1239.35161
- Large solution to nonlinear elliptic equation with nonlinear gradient terms, Journal of Differential Equations, Volume 251 (2011) no. 12, pp. 3297-3328 | DOI:10.1016/j.jde.2011.08.031 | Zbl:1231.35068
- Multiplicity of positive solutions to boundary blow-up elliptic problems with sign-changing weights, Journal of Functional Analysis, Volume 261 (2011) no. 7, pp. 1775-1798 | DOI:10.1016/j.jfa.2011.05.018 | Zbl:1387.35308
- Boundary blow-up rates of large solutions for elliptic equations with convection terms, Journal of Mathematical Analysis and Applications, Volume 373 (2011) no. 1, pp. 30-43 | DOI:10.1016/j.jmaa.2010.06.031 | Zbl:1201.35105
- The second expansion of the solution for a singular elliptic boundary value problem, Journal of Mathematical Analysis and Applications, Volume 381 (2011) no. 2, pp. 922-934 | DOI:10.1016/j.jmaa.2011.04.018 | Zbl:1221.35174
- The second expansion of large solutions for semilinear elliptic equations, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 74 (2011) no. 11, pp. 3445-3457 | DOI:10.1016/j.na.2011.02.031 | Zbl:1217.35074
- Boundary asymptotic behavior and uniqueness of large solutions to quasilinear elliptic equations, Computers Mathematics with Applications, Volume 59 (2010) no. 6, pp. 2007-2017 | DOI:10.1016/j.camwa.2009.12.003 | Zbl:1189.35140
- Blow-up rates of large solutions for elliptic equations, Journal of Differential Equations, Volume 249 (2010) no. 1, pp. 180-199 | DOI:10.1016/j.jde.2010.02.019 | Zbl:1191.35137
- Asymptotic behavior of positive solutions of a singular nonlinear Dirichlet problem, Journal of Mathematical Analysis and Applications, Volume 369 (2010) no. 2, pp. 719-729 | DOI:10.1016/j.jmaa.2010.04.008 | Zbl:1196.35109
- Boundary behavior of large solutions to semilinear elliptic equations with nonlinear gradient terms, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 73 (2010) no. 10, pp. 3348-3363 | DOI:10.1016/j.na.2010.07.017 | Zbl:1198.35077
- Boundary behavior of solutions for the degenerate logistic type elliptic problem with boundary blow-up, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 73 (2010) no. 10, pp. 3472-3478 | DOI:10.1016/j.na.2009.11.052 | Zbl:1200.35132
- The exact blow-up rates of large solutions for semilinear elliptic equations, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 73 (2010) no. 11, pp. 3489-3501 | DOI:10.1016/j.na.2010.06.069 | Zbl:1200.35134
- Boundary asymptotical behavior of large solutions to complex Hessian equations, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 73 (2010) no. 12, pp. 3940-3946 | DOI:10.1016/j.na.2010.08.027 | Zbl:1215.32018
- Uniqueness results and asymptotic behavior of solutions with boundary blow-up for logistic-type porous media equations, ZAMP. Zeitschrift für angewandte Mathematik und Physik, Volume 61 (2010) no. 2, pp. 277-292 | DOI:10.1007/s00033-009-0015-1 | Zbl:1273.76395
- Asymptotic behavior of large solution to elliptic equation of Bieberbach-Rademacher type with convection terms, Applied Mathematics and Computation, Volume 210 (2009) no. 2, pp. 284-293 | DOI:10.1016/j.amc.2008.12.067 | Zbl:1178.35167
- Asymptotic behavior of large solution for boundary blowup problems with non-linear gradient terms, Applied Mathematics and Computation, Volume 215 (2009) no. 8, pp. 3091-3097 | DOI:10.1016/j.amc.2009.10.002 | Zbl:1182.35052
- Uniqueness and blow-up rate of large solutions for elliptic equation
, Journal of Differential Equations, Volume 247 (2009) no. 2, pp. 344-363 | DOI:10.1016/j.jde.2009.04.001 | Zbl:1173.35064 - Blow-up rates of radially symmetric large solutions, Journal of Mathematical Analysis and Applications, Volume 352 (2009) no. 1, pp. 166-174 | DOI:10.1016/j.jmaa.2008.06.022 | Zbl:1163.35015
- Boundary behaviour of the unique solution to a singular Dirichlet problem with a convection term, Journal of Mathematical Analysis and Applications, Volume 352 (2009) no. 1, pp. 77-84 | DOI:10.1016/j.jmaa.2008.01.075 | Zbl:1163.35022
- Remarks on large solutions of a class of semilinear elliptic equations, Journal of Mathematical Analysis and Applications, Volume 356 (2009) no. 2, pp. 393-404 | DOI:10.1016/j.jmaa.2009.03.021 | Zbl:1167.35017
- Uniqueness of positive solutions for a boundary blow-up problem, Journal of Mathematical Analysis and Applications, Volume 360 (2009) no. 2, pp. 530-536 | DOI:10.1016/j.jmaa.2009.06.077 | Zbl:1182.35006
- Asymptotic behavior of large solutions to
-Laplacian of Bieberbach-Rademacher type, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 71 (2009) no. 11, pp. 5773-5780 | DOI:10.1016/j.na.2009.04.064 | Zbl:1176.35080 - Uniqueness of boundary blow-up solutions on unbounded domain of
, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 71 (2009) no. 12, p. e2118-e2126 | DOI:10.1016/j.na.2009.03.084 | Zbl:1239.35004 - Exact asymptotic behavior near the boundary to the solution for singular nonlinear Dirichlet problems, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 71 (2009) no. 9, pp. 4137-4150 | DOI:10.1016/j.na.2009.02.073 | Zbl:1177.35091
- The existence and global optimal asymptotic behaviour of large solutions for a semilinear elliptic problem, Acta Mathematica Scientia, Volume 28 (2008) no. 3, p. 595 | DOI:10.1016/s0252-9602(08)60062-4
- Asymptotic behavior of the unique solution to a singular elliptic problem with nonlinear convection term and singular weight, Advanced Nonlinear Studies, Volume 8 (2008) no. 2, pp. 391-400 | DOI:10.1515/ans-2008-0209 | Zbl:1168.35370
- Existence of large solutions for a quasilinear elliptic problem via explosive sub-supersolutions, Applied Mathematics and Computation, Volume 199 (2008) no. 2, pp. 414-424 | DOI:10.1016/j.amc.2007.10.009 | Zbl:1141.35025
- On the Monge-Ampère equation with boundary blow-up: existence, uniqueness and asymptotics, Calculus of Variations and Partial Differential Equations, Volume 31 (2008) no. 2, pp. 167-186 | DOI:10.1007/s00526-007-0108-7 | Zbl:1148.35022
- Existence, uniqueness and blow-up rate of large solutions for a canonical class of one-dimensional problems on the half-line, Journal of Differential Equations, Volume 244 (2008) no. 12, pp. 3180-3203 | DOI:10.1016/j.jde.2007.11.012 | Zbl:1149.34020
- Large solutions for an elliptic system of quasilinear equations, Journal of Differential Equations, Volume 245 (2008) no. 12, pp. 3735-3752 | DOI:10.1016/j.jde.2008.04.004 | Zbl:1169.35021
- Blow-up rate of the unique solution for a class of one-dimensional problems on the half-line, Journal of Mathematical Analysis and Applications, Volume 348 (2008) no. 2, pp. 797-805 | DOI:10.1016/j.jmaa.2008.07.074 | Zbl:1176.34033
- A boundary blow-up elliptic problem with an inhomogeneous term, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 68 (2008) no. 11, pp. 3428-3438 | DOI:10.1016/j.na.2007.03.034 | Zbl:1158.35040
- The exact boundary blow-up rate of large solutions for semilinear elliptic problems, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 68 (2008) no. 9, pp. 2791-2800 | DOI:10.1016/j.na.2007.02.026 | Zbl:1138.35025
- Boundary blow-up quasilinear elliptic problems of the Bieberbach type with nonlinear gradient terms, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 69 (2008) no. 12, pp. 4380-4391 | DOI:10.1016/j.na.2007.10.060 | Zbl:1159.35034
- Boundary behavior of solutions to some singular elliptic boundary value problems, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 69 (2008) no. 7, pp. 2293-2302 | DOI:10.1016/j.na.2007.08.009 | Zbl:1151.35032
- Large solutions of elliptic equations with a weakly superlinear nonlinearity, Journal d'Analyse Mathématique, Volume 103 (2007), pp. 261-277 | DOI:10.1007/s11854-008-0008-6 | Zbl:1186.35059
- Asymptotic behavior of solutions of semilinear elliptic equations near an isolated singularity, Journal of Functional Analysis, Volume 250 (2007) no. 2, pp. 317-346 | DOI:10.1016/j.jfa.2007.05.005 | Zbl:1220.35046
- Boundary asymptotic and uniqueness of solutions to the
-Laplacian with infinite boundary values, Journal of Mathematical Analysis and Applications, Volume 325 (2007) no. 1, pp. 480-489 | DOI:10.1016/j.jmaa.2006.02.008 | Zbl:1142.35412 - A remark on uniqueness of large solutions for elliptic systems of competitive type, Journal of Mathematical Analysis and Applications, Volume 331 (2007) no. 1, pp. 608-616 | DOI:10.1016/j.jmaa.2006.09.006 | Zbl:1131.35015
- Remarks on uniqueness of boundary blow-up solutions, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 66 (2007) no. 2, pp. 484-497 | DOI:10.1016/j.na.2005.11.042 | Zbl:1159.35330
- Boundary blow-up elliptic problems of Bieberbach and Rademacher type with nonlinear gradient terms, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 67 (2007) no. 3, pp. 727-734 | DOI:10.1016/j.na.2006.06.025 | Zbl:1131.35026
- Uniqueness for boundary blow-up problems with continuous weights, Proceedings of the American Mathematical Society, Volume 135 (2007) no. 9, pp. 2785-2793 | DOI:10.1090/s0002-9939-07-08822-3 | Zbl:1146.35036
- Singular Phenomena in Nonlinear Elliptic Problems: From Blow-Up Boundary Solutions to Equations with Singular Nonlinearities, Stationary Partial Differential Equations, Volume 4 (2007), p. 485 | DOI:10.1016/s1874-5733(07)80010-6
- Boundary blow-up in nonlinear elliptic equations of Bieberbach-Rademacher type, Transactions of the American Mathematical Society, Volume 359 (2007) no. 7, pp. 3275-3286 | DOI:10.1090/s0002-9947-07-04107-4 | Zbl:1134.35039
- Optimal uniqueness theorems and exact blow-up rates of large solutions, Journal of Differential Equations, Volume 224 (2006) no. 2, pp. 385-439 | DOI:10.1016/j.jde.2005.08.008 | Zbl:1208.35036
- Exact multiplicity for boundary blow-up solutions, Journal of Differential Equations, Volume 228 (2006) no. 2, pp. 486-506 | DOI:10.1016/j.jde.2006.02.012 | Zbl:1139.35345
- Boundary blow-up elliptic problems with nonlinear gradient terms, Journal of Differential Equations, Volume 228 (2006) no. 2, pp. 661-684 | DOI:10.1016/j.jde.2006.02.003 | Zbl:1130.35063
- Structure of boundary blow-up solutions for quasi-linear elliptic problems. II: Small and intermediate solutions, Journal of Differential Equations, Volume 211 (2005) no. 1, pp. 187-217 | DOI:10.1016/j.jde.2004.06.008 | Zbl:1134.35339
- The asymptotic behaviour of solutions with blow-up at the boundary for semilinear elliptic problems, Journal of Mathematical Analysis and Applications, Volume 308 (2005) no. 2, pp. 532-540 | DOI:10.1016/j.jmaa.2004.11.029 | Zbl:1160.35417
- The asymptotic behaviour of the unique solution for the singular Lane-Emden-Fowler equation, Journal of Mathematical Analysis and Applications, Volume 312 (2005) no. 1, pp. 33-43 | DOI:10.1016/j.jmaa.2005.03.023 | Zbl:1165.35377
- The asymptotic behaviour of solutions with boundary blow-up for semilinear elliptic equations with nonlinear gradient terms, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 62 (2005) no. 6, pp. 1137-1148 | DOI:10.1016/j.na.2005.04.028 | Zbl:1213.35225
- Metasolutions: Malthus versus Verhulst in Population Dynamics. A Dream of Volterra, Stationary Partial Differential Equations, Volume 2 (2005), p. 211 | DOI:10.1016/s1874-5733(05)80012-9
- An extreme variation phenomenon for some nonlinear elliptic problems with boundary blow-up, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 339 (2004) no. 10, pp. 689-694 | DOI:10.1016/j.crma.2004.10.005 | Zbl:1133.35352
- Extremal singular solutions for degenerate logistic-type equations in anisotropic media, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 339 (2004) no. 2, pp. 119-124 | DOI:10.1016/j.crma.2004.04.025 | Zbl:1101.35034
- Singular boundary value problems of a porous media logistic equation, Hiroshima Mathematical Journal, Volume 34 (2004) no. 1, pp. 57-80 | DOI:10.32917/hmj/1150998071 | Zbl:1112.35065
- Uniqueness and layer analysis for boundary blow up solutions, Journal de Mathématiques Pures et Appliquées. Neuvième Série, Volume 83 (2004) no. 6, pp. 739-763 | DOI:10.1016/j.matpur.2004.01.006 | Zbl:1081.35032
- Asymptotics for the blow-up boundary solution of the logistic equation with absorption., Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 336 (2003) no. 3, pp. 231-236 | DOI:10.1016/s1631-073x(03)00027-x | Zbl:1068.35035
- Bifurcation and asymptotics for the Lane–Emden–Fowler equation., Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 337 (2003) no. 4, pp. 259-264 | DOI:10.1016/s1631-073x(03)00335-2 | Zbl:1073.35087
- The boundary blow-up rate of large solutions., Journal of Differential Equations, Volume 195 (2003) no. 1, pp. 25-45 | DOI:10.1016/j.jde.2003.06.003 | Zbl:1130.35329
Cité par 149 documents. Sources : Crossref, zbMATH
☆ The research of F. Cı̂rstea was done under the IPRS Programme funded by the Australian Government through DETYA. V. Rădulescu was supported by the P.I.C.S. Research Programme between France and Romania.
Commentaires - Politique