[Unicité de la solution explosant au bord pour équations logistiques avec absorption]
Soit un domaine borné et régulier de . On suppose que f∈C1[0,∞) est une fonction non-negative telle que f(u)/u soit strictement croissante sur (0,+∞). Soit a un réel et b⩾0, une fonction continue sur . On étudie l'équation logistique Δu+au=b(x)f(u) sur . Le but de cette Note est de montrer l'unicité de la solution explosant au bord de dans un contexte général, qui apparaı̂t en théorie des probabilités.
Let be a smooth bounded domain in . Assume f∈C1[0,∞) is a non-negative function such that f(u)/u is increasing on (0,∞). Let a be a real number and let b⩾0, be a continuous function such that b≡0 on . We study the logistic equation Δu+au=b(x)f(u) in . The special feature of this work is the uniqueness of positive solutions blowing-up on , in a general setting that arises in probability theory.
Publié le :
Florica-Corina Cı̂rstea 1 ; Vicenţiu Rădulescu 2
@article{CRMATH_2002__335_5_447_0, author = {Florica-Corina C{\i}̂rstea and Vicen\c{t}iu R\u{a}dulescu}, title = {Uniqueness of the blow-up boundary solution of logistic equations with absorbtion}, journal = {Comptes Rendus. Math\'ematique}, pages = {447--452}, publisher = {Elsevier}, volume = {335}, number = {5}, year = {2002}, doi = {10.1016/S1631-073X(02)02503-7}, language = {en}, }
TY - JOUR AU - Florica-Corina Cı̂rstea AU - Vicenţiu Rădulescu TI - Uniqueness of the blow-up boundary solution of logistic equations with absorbtion JO - Comptes Rendus. Mathématique PY - 2002 SP - 447 EP - 452 VL - 335 IS - 5 PB - Elsevier DO - 10.1016/S1631-073X(02)02503-7 LA - en ID - CRMATH_2002__335_5_447_0 ER -
Florica-Corina Cı̂rstea; Vicenţiu Rădulescu. Uniqueness of the blow-up boundary solution of logistic equations with absorbtion. Comptes Rendus. Mathématique, Volume 335 (2002) no. 5, pp. 447-452. doi : 10.1016/S1631-073X(02)02503-7. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02503-7/
[1] On the solvability of a semilinear elliptic equation via an associated eigenvalue problem, Math. Z., Volume 221 (1996), pp. 467-493
[2] ‘Large’ solutions of semilinear elliptic equations: existence, uniqueness and asymptotic behavior, J. Anal. Math., Volume 58 (1992), pp. 9-24
[3] F. Cı̂rstea, V. Rădulescu, Solutions with boundary blow-up for a class of nonlinear elliptic problems, Houston J. Math., in press
[4] Existence and uniqueness of blow-up solutions for a class of logistic equations, Commun. Contemp. Math., Volume 4 (2002), pp. 559-586
[5] Blow-up solutions for a class of semilinear elliptic and parabolic equations, SIAM J. Math. Anal., Volume 31 (1999), pp. 1-18
[6] Uniqueness and asymptotic behaviour for solutions of semilinear problems with boundary blow-up, Proc. Amer. Math. Soc., Volume 129 (2001), pp. 3593-3602
[7] On solution of Δu=f(u), Comm. Pure Appl. Math., Volume 10 (1957), pp. 503-510
[8] Partial differential equations invariant under conformal or projective transformations (L. Alhfors, ed.), Contributions to Analysis, Academic Press, New York, 1974, pp. 245-272
[9] Uniqueness and asymptotic behavior of solutions with boundary blow-up for a class of nonlinear elliptic equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 14 (1997), pp. 237-274
[10] On the inequality Δu⩾f(u), Pacific J. Math., Volume 7 (1957), pp. 1641-1647
[11] Regularly Varying Functions, Lecture Notes in Math., 508, Springer-Verlag, Berlin, Heidelberg, 1976
[12] Semilinear elliptic equations with uniform blow-up on the boundary, J. Anal. Math., Volume 59 (1992), pp. 231-250
Cité par Sources :
☆ The research of F. Cı̂rstea was done under the IPRS Programme funded by the Australian Government through DETYA. V. Rădulescu was supported by the P.I.C.S. Research Programme between France and Romania.
Commentaires - Politique