[La Méthode du Complément Singulier pour des problèmes scalaires 2d]
Nous présentons une méthode d'approximation qui permet de retrouver l'estimation d'erreur optimale, lorsqu'elle est utilisée avec la méthode usuelle des Eléments Finis de Lagrange P1, dans des domaines bidimensionnels non-convexes. Celle-ci peut-être appliquée aux équations de Poisson, de la chaleur ou des ondes scalaires, ainsi qu'à des problèmes similaires à coefficients constants par morceaux.
We propose a method, which allows us to recover an optimal error convergence rate, when it is used in addition to the usual P1 Lagrange Finite Element Method, in 2d non-convex domains. It can be applied to the Laplace problem, the heat or wave equations, or similar problems with piecewise constant coefficients.
Accepté le :
Publié le :
Patrick Ciarlet 1 ; Jiwen He 2
@article{CRMATH_2003__336_4_353_0, author = {Patrick Ciarlet and Jiwen He}, title = {The {Singular} {Complement} {Method} for 2d scalar problems}, journal = {Comptes Rendus. Math\'ematique}, pages = {353--358}, publisher = {Elsevier}, volume = {336}, number = {4}, year = {2003}, doi = {10.1016/S1631-073X(03)00030-X}, language = {en}, }
Patrick Ciarlet; Jiwen He. The Singular Complement Method for 2d scalar problems. Comptes Rendus. Mathématique, Volume 336 (2003) no. 4, pp. 353-358. doi : 10.1016/S1631-073X(03)00030-X. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00030-X/
[1] F. Assous, P. Ciarlet Jr., S. Labrunie, J. Segré, Numerical solution to the time-dependent Maxwell equations in axisymmetric singular domains: the Singular Complement Method, J. Comput. Phys., submitted
[2] Numerical solution to the time-dependent Maxwell equations in two-dimensional singular domains: the Singular Complement Method, J. Comput. Phys., Volume 161 (2000), pp. 218-249
[3] Resolution of the Maxwell equations in a domain with reentrant corners, Math. Mod. Numer. Anal., Volume 32 (1998), pp. 359-389
[4] Une méthode d'éléments finis pour la résolution des problèmes elliptiques dans des ouverts avec coins, C. R. Acad. Sci. Paris, Sér. I, Volume 293 (1981), pp. 99-101
[5] Singularities in Boundary Value Problems, RMA, 22, Masson, Paris, 1992
[6] C. Hazard, S. Lohrengel, A singular field method for Maxwell's equations: numerical aspects in two dimensions, SIAM J. Appl. Math., to appear
[7] Sur l'approximation des solutions du problème de Dirichlet dans un ouvert avec coins (P. Grisvard et al., eds.), Singularities and Constructive Methods for their Treatment, Vol. 1121, Springer-Verlag, 1984, pp. 199-206
- Scattering resonances in unbounded transmission problems with sign-changing coefficient, IMA Journal of Applied Mathematics, Volume 88 (2023) no. 2, p. 215 | DOI:10.1093/imamat/hxad005
- A C0 finite element method for the biharmonic problem with Navier boundary conditions in a polygonal domain, IMA Journal of Numerical Analysis, Volume 43 (2023) no. 3, p. 1779 | DOI:10.1093/imanum/drac026
- An Optimal Control-Based Numerical Method for Scalar Transmission Problems with Sign-Changing Coefficients, SIAM Journal on Numerical Analysis, Volume 61 (2023) no. 3, p. 1316 | DOI:10.1137/22m1495998
- A numerical solution for the inhomogeneous Dirichlet boundary value problem on a non-convex polygon, Applied Mathematics and Computation, Volume 341 (2019), p. 31 | DOI:10.1016/j.amc.2018.08.011
-
Interior Penalty Methods for an Elliptic Distributed Optimal Control Problem on Nonconvex Polygonal Domains with Pointwise State Constraints, SIAM Journal on Numerical Analysis, Volume 56 (2018) no. 3, p. 1758 | DOI:10.1137/17m1140649 - Relaxing the CFL Condition for the Wave Equation on Adaptive Meshes, Journal of Scientific Computing, Volume 72 (2017) no. 3, p. 1196 | DOI:10.1007/s10915-017-0394-y
- A hybrid method for the solution of the Poisson equation in the domain of metal-dielectric corners, Moscow University Physics Bulletin, Volume 72 (2017) no. 1, p. 16 | DOI:10.3103/s0027134916050064
- Adapted Numerical Methods for the Poisson Equation with
Boundary Data in NonConvex Domains, SIAM Journal on Numerical Analysis, Volume 55 (2017) no. 4, p. 1937 | DOI:10.1137/16m1062077 - Fine singularity analysis of solutions to the Laplace equation: Berg's effect, Mathematical Methods in the Applied Sciences, Volume 39 (2016) no. 5, p. 1069 | DOI:10.1002/mma.3546
- Fine singularity analysis of solutions to the Laplace equation, Mathematical Methods in the Applied Sciences, Volume 38 (2015) no. 9, p. 1734 | DOI:10.1002/mma.3182
- SINGULARITIES OF STATIONARY SOLUTIONS TO THE VLASOV–POISSON SYSTEM IN A POLYGON, Mathematical Models and Methods in Applied Sciences, Volume 23 (2013) no. 06, p. 1029 | DOI:10.1142/s0218202513500024
- Electrowetting of a 3D drop: numerical modelling with electrostatic vector fields, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 44 (2010) no. 4, p. 647 | DOI:10.1051/m2an/2010014
- A proof of the invariance of the contact angle in electrowetting, Mathematical and Computer Modelling, Volume 49 (2009) no. 3-4, p. 647 | DOI:10.1016/j.mcm.2008.01.009
- Numerical study of a new global minimizer for the Mumford-Shah functional in R3, ESAIM: Control, Optimisation and Calculus of Variations, Volume 13 (2007) no. 3, p. 553 | DOI:10.1051/cocv:2007026
- MULTISCALED ASYMPTOTIC EXPANSIONS FOR THE ELECTRIC POTENTIAL: SURFACE CHARGE DENSITIES AND ELECTRIC FIELDS AT ROUNDED CORNERS, Mathematical Models and Methods in Applied Sciences, Volume 17 (2007) no. 06, p. 845 | DOI:10.1142/s0218202507002133
- Time-dependent Maxwell’s equations with charges in singular geometries, Computer Methods in Applied Mechanics and Engineering, Volume 196 (2006) no. 1-3, p. 665 | DOI:10.1016/j.cma.2006.07.007
- The Fourier Singular Complement Method for the Poisson problem. Part II: axisymmetric domains, Numerische Mathematik, Volume 102 (2006) no. 4, p. 583 | DOI:10.1007/s00211-005-0664-8
- The Fourier Singular Complement Method for the Poisson problem. Part I: prismatic domains, Numerische Mathematik, Volume 101 (2005) no. 3, p. 423 | DOI:10.1007/s00211-005-0621-6
- Numerical solution to the time-dependent Maxwell equations in axisymmetric singular domains: the singular complement method, Journal of Computational Physics, Volume 191 (2003) no. 1, p. 147 | DOI:10.1016/s0021-9991(03)00309-7
Cité par 19 documents. Sources : Crossref
Commentaires - Politique