[Sous-extension des fonctions plurisousharmoniques de masse de Monge–Ampère bornée]
Let
It is known that the complex Monge–Ampère operator is well defined on the class
We prove that if
From this result we deduce a global uniform integrability theorem for the classes of plurisubharmonic functions with uniformly bounded Monge–Ampère masses on
Soit
On démontre alors que pour tout domaine hyperconvexe
Accepté le :
Publié le :
Urban Cegrell 1 ; Ahmed Zeriahi 2
@article{CRMATH_2003__336_4_305_0, author = {Urban Cegrell and Ahmed Zeriahi}, title = {Subextension of plurisubharmonic functions with bounded {Monge{\textendash}Amp\`ere} mass}, journal = {Comptes Rendus. Math\'ematique}, pages = {305--308}, publisher = {Elsevier}, volume = {336}, number = {4}, year = {2003}, doi = {10.1016/S1631-073X(03)00031-1}, language = {en}, }
Urban Cegrell; Ahmed Zeriahi. Subextension of plurisubharmonic functions with bounded Monge–Ampère mass. Comptes Rendus. Mathématique, Volume 336 (2003) no. 4, pp. 305-308. doi : 10.1016/S1631-073X(03)00031-1. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00031-1/
[1] Domains of existence for plurisubharmonic functions, Math. Ann., Volume 238 (1978) no. 1, pp. 67-69
[2] A new capacity for plurisubharmonic functions, Acta Math., Volume 149 (1981), pp. 1-40
[3] Smooth plurisubharmonic functions without subextension, Math. Z., Volume 198 (1988) no. 3, pp. 331-337
[4] On the domains of existence for plurisubharmonic functions, Complex Analysis, Warsaw, 1979, Banach Center Publ., 11, PWN, Warsaw, 1983, pp. 33-37
[5] Pluricomplex energy, Acta Math., Volume 180 (1998), pp. 187-217
[6] U. Cegrell, The general definition of the complex Monge–Ampère operator, Preprint of Umeå University and Mid Sweden University, 2002
[7] Fonctions plurisousharmoniques et ensembles pluripolaires, Séminaire Lelong–Skoda, Lecture Notes in Math., 822, Springer-Verlag, 1980, pp. 61-76
[8] Plurisubharmonic functions on ring domains, Complex Analysis, Univ. Park, 1986, Lecture Notes in Math., 1268, Springer-Verlag, 1987, pp. 111-120
[9] The range of the complex Monge–Ampère operator, Indiana Univ. Math. J., Volume 44 (1995) no. 3, pp. 765-783
[10] The complex Monge–Ampère equation, Acta Math., Volume 180 (1998), pp. 69-117
[11] Pluricomplex Green functions and the Dirichlet problem for complex Monge–Ampère operator, Michigan Math. J., Volume 44 (1997), pp. 579-596
[12] Volume and capacity of sublevel sets of a Lelong class of plurisubharmonic functions, Indiana Univ. Math. J., Volume 50 (2001) no. 1, pp. 671-703
[13] A. Zeriahi, Local uniform integrability and the size of plurisubharmonic lemniscates in terms of Hausdorff–Riesz measures, Prépublication n° 222, Laboratoire Emile Picard, UPS-Toulouse, 2001
Cité par Sources :
Commentaires - Politique