Comptes Rendus
Complex Analysis
Subextension of plurisubharmonic functions with bounded Monge–Ampère mass
[Sous-extension des fonctions plurisousharmoniques de masse de Monge–Ampère bornée]
Comptes Rendus. Mathématique, Volume 336 (2003) no. 4, pp. 305-308.

Soit Ωn un domaine hyperconvexe. On désigne par 0(Ω) la classe des fonctions plurisousharmoniques sur Ω avec valeurs au bord nulle et de masse de Monge–Ampère finie sur Ω. On désigne par (Ω) la classe des fonctions ϕ plurisousharmoniques négatives sur Ω, limite d'une suite décroissante (ϕj) de fonctions de 0(Ω) telle que supjΩ(ddcϕj)n<+. On sait que l'opérateur de Monge–Ampère est bien défini sur (Ω) et que pour une fonction ϕ(Ω), la mesure de Monge–Ampère associée est une mesure de Borel sur Ω de masse totale bornée. Une telle fonction sera dite de masse de Monge–Ampère bornée sur Ω.

On démontre alors que pour tout domaine hyperconvexe Ω˜,ΩΩ˜n et tout ϕ(Ω) il existe une fonction ϕ˜(Ω˜) telle que ϕ˜ϕ sur Ω et Ω˜(ddcϕ˜)nΩ(ddcϕ)n. Une telle fonction ϕ˜ est dite sous-extension de ϕ au domaine Ω˜. A partir de ce résultat, nous déduisons un théorème d'intégrabilté uniforme global pour les classes de fonction plurisousharmoniques sur Ωn ayant des masses de Monge–Ampère uniformément bornées sur Ω.

Let Ωn be a hyperconvex domain. Denote by 0(Ω) the class of negative plurisubharmonic functions ϕ on Ω with boundary values 0 and finite Monge–Ampère mass on Ω. Then denote by (Ω) the class of negative plurisubharmonic functions ϕ on Ω for which there exists a decreasing sequence (ϕ)j of plurisubharmonic functions in 0(Ω) converging to ϕ such that supjΩ(ddcϕj)n+.

It is known that the complex Monge–Ampère operator is well defined on the class (Ω) and that for a function ϕ(Ω) the associated positive Borel measure is of bounded mass on Ω. A function from the class (Ω) is called a plurisubharmonic function with bounded Monge–Ampère mass on Ω.

We prove that if Ω and Ω˜ are hyperconvex domains with ΩΩ˜n and ϕ(Ω), there exists a plurisubharmonic function ϕ˜(Ω˜) such that ϕ˜ϕ on Ω and Ω˜(ddcϕ˜)nΩ(ddcϕ)n. Such a function is called a subextension of ϕ to Ω˜.

From this result we deduce a global uniform integrability theorem for the classes of plurisubharmonic functions with uniformly bounded Monge–Ampère masses on Ω.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(03)00031-1

Urban Cegrell 1 ; Ahmed Zeriahi 2

1 Department of Mathematics, University of Umeä, 90187 Umeä, Sweden
2 Université Paul Sabatier, institut de mathématiques, laboratoire Emile Picard, 118, route de Narbonne, 31062 Toulouse, France
@article{CRMATH_2003__336_4_305_0,
     author = {Urban Cegrell and Ahmed Zeriahi},
     title = {Subextension of plurisubharmonic functions with bounded {Monge{\textendash}Amp\`ere} mass},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {305--308},
     publisher = {Elsevier},
     volume = {336},
     number = {4},
     year = {2003},
     doi = {10.1016/S1631-073X(03)00031-1},
     language = {en},
}
TY  - JOUR
AU  - Urban Cegrell
AU  - Ahmed Zeriahi
TI  - Subextension of plurisubharmonic functions with bounded Monge–Ampère mass
JO  - Comptes Rendus. Mathématique
PY  - 2003
SP  - 305
EP  - 308
VL  - 336
IS  - 4
PB  - Elsevier
DO  - 10.1016/S1631-073X(03)00031-1
LA  - en
ID  - CRMATH_2003__336_4_305_0
ER  - 
%0 Journal Article
%A Urban Cegrell
%A Ahmed Zeriahi
%T Subextension of plurisubharmonic functions with bounded Monge–Ampère mass
%J Comptes Rendus. Mathématique
%D 2003
%P 305-308
%V 336
%N 4
%I Elsevier
%R 10.1016/S1631-073X(03)00031-1
%G en
%F CRMATH_2003__336_4_305_0
Urban Cegrell; Ahmed Zeriahi. Subextension of plurisubharmonic functions with bounded Monge–Ampère mass. Comptes Rendus. Mathématique, Volume 336 (2003) no. 4, pp. 305-308. doi : 10.1016/S1631-073X(03)00031-1. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00031-1/

[1] E. Bedford; D. Burns Domains of existence for plurisubharmonic functions, Math. Ann., Volume 238 (1978) no. 1, pp. 67-69

[2] E. Bedford; B.A. Taylor A new capacity for plurisubharmonic functions, Acta Math., Volume 149 (1981), pp. 1-40

[3] E. Bedford; B.A. Taylor Smooth plurisubharmonic functions without subextension, Math. Z., Volume 198 (1988) no. 3, pp. 331-337

[4] U. Cegrell On the domains of existence for plurisubharmonic functions, Complex Analysis, Warsaw, 1979, Banach Center Publ., 11, PWN, Warsaw, 1983, pp. 33-37

[5] U. Cegrell Pluricomplex energy, Acta Math., Volume 180 (1998), pp. 187-217

[6] U. Cegrell, The general definition of the complex Monge–Ampère operator, Preprint of Umeå University and Mid Sweden University, 2002

[7] H. El Mir Fonctions plurisousharmoniques et ensembles pluripolaires, Séminaire Lelong–Skoda, Lecture Notes in Math., 822, Springer-Verlag, 1980, pp. 61-76

[8] E. Fornaess; N. Sibony Plurisubharmonic functions on ring domains, Complex Analysis, Univ. Park, 1986, Lecture Notes in Math., 1268, Springer-Verlag, 1987, pp. 111-120

[9] S. Kolodziej The range of the complex Monge–Ampère operator, Indiana Univ. Math. J., Volume 44 (1995) no. 3, pp. 765-783

[10] S. Kolodziej The complex Monge–Ampère equation, Acta Math., Volume 180 (1998), pp. 69-117

[11] A. Zeriahi Pluricomplex Green functions and the Dirichlet problem for complex Monge–Ampère operator, Michigan Math. J., Volume 44 (1997), pp. 579-596

[12] A. Zeriahi Volume and capacity of sublevel sets of a Lelong class of plurisubharmonic functions, Indiana Univ. Math. J., Volume 50 (2001) no. 1, pp. 671-703

[13] A. Zeriahi, Local uniform integrability and the size of plurisubharmonic lemniscates in terms of Hausdorff–Riesz measures, Prépublication n° 222, Laboratoire Emile Picard, UPS-Toulouse, 2001

  • Nguyen Van Phu; Nguyen Quang Dieu Maximal Subextension and Approximation of m-Subharmonic Function, Michigan Mathematical Journal, Volume -1 (2025) no. -1 | DOI:10.1307/mmj/20236392
  • Hoang Thieu Anh; Nguyen Van Phu; Nguyen Quang Dieu Weighted energy class of m-subharmonic functions, Periodica Mathematica Hungarica (2025) | DOI:10.1007/s10998-025-00626-4
  • Le Mau Hai; Pham Hoang Hiep; Trinh Tung Cone of Maximal Subextensions of the Plurisubharmonic Functions, Acta Mathematica Vietnamica, Volume 49 (2024) no. 1, p. 83 | DOI:10.1007/s40306-023-00509-1
  • Tang Van Long; Nguyen Xuan Hong; Pham Thi Lieu Continuity of the Perron–Bremermann envelope of plurisubharmonic functions, Collectanea Mathematica, Volume 75 (2024) no. 3, p. 659 | DOI:10.1007/s13348-023-00405-9
  • Van Phu Nguyen Approximation of m-subharmonic function with given boundary values, Journal of Mathematical Analysis and Applications, Volume 534 (2024) no. 2, p. 128097 | DOI:10.1016/j.jmaa.2024.128097
  • Mohamed Zaway; Jawhar Hbil On Some Weighted Classes of m-Subharmonic Functions, Zurnal matematiceskoj fiziki, analiza, geometrii, Volume 20 (2024) no. 1, p. 112 | DOI:10.15407/mag20.01.112
  • Vincent Guedj; Henri Guenancia; Ahmed Zeriahi Continuity of Singular Kähler–Einstein Potentials, International Mathematics Research Notices, Volume 2023 (2023) no. 2, p. 1355 | DOI:10.1093/imrn/rnab294
  • Robert J. Berman; Bo Berndtsson Moser–Trudinger type inequalities for complex Monge–Ampère operators and Aubin’s “hypothèse fondamentale”, Annales de la Faculté des sciences de Toulouse : Mathématiques, Volume 31 (2022) no. 3, p. 595 | DOI:10.5802/afst.1704
  • Quang Dieu Nguyen; Thai Duong Do Decay near boundary of volume of sublevel sets of m-subharmonic functions, Indagationes Mathematicae, Volume 33 (2022) no. 2, p. 357 | DOI:10.1016/j.indag.2021.09.001
  • Le Mau Hai; Trieu Van Dung Subextension of m-Subharmonic Functions, Vietnam Journal of Mathematics, Volume 48 (2020) no. 1, p. 47 | DOI:10.1007/s10013-019-00343-9
  • Le Mau Hai; Tran Van Thuy; Nguyen Xuan Hong A Note on Maximal Subextensions of Plurisubharmonic Functions, Acta Mathematica Vietnamica, Volume 43 (2018) no. 1, p. 137 | DOI:10.1007/s40306-017-0234-z
  • Le Mau Hai; Nguyen Van Khiem; Trieu Van Dung Subextension of plurisubharmonic functions in unbounded hyperconvex domains and applications, Complex Variables and Elliptic Equations, Volume 61 (2016) no. 8, p. 1116 | DOI:10.1080/17476933.2016.1143466
  • Le Mau Hai; Nguyen Xuan Hong; Trieu Van Dung Subextension of plurisubharmonic functions with boundary values in weighted pluricomplex energy classes, Complex Variables and Elliptic Equations, Volume 60 (2015) no. 11, p. 1580 | DOI:10.1080/17476933.2015.1036244
  • Nguyen Xuan Hong Monge–Ampère measures of maximal subextensions of plurisubharmonic functions with given boundary values, Complex Variables and Elliptic Equations, Volume 60 (2015) no. 3, p. 429 | DOI:10.1080/17476933.2014.944177
  • U. Cegrell; S. Kołodziej; A. Zeriahi Maximal subextensions of plurisubharmonic functions, Annales de la Faculté des sciences de Toulouse : Mathématiques, Volume 20 (2011) no. S2, p. 101 | DOI:10.5802/afst.1307
  • LISA HED APPROXIMATION OF NEGATIVE PLURISUBHARMONIC FUNCTIONS WITH GIVEN BOUNDARY VALUES, International Journal of Mathematics, Volume 21 (2010) no. 09, p. 1135 | DOI:10.1142/s0129167x10006410
  • P. Åhag; U. Cegrell; S. Kołodziej; H.H. Phạm; A. Zeriahi Partial pluricomplex energy and integrability exponents of plurisubharmonic functions, Advances in Mathematics, Volume 222 (2009) no. 6, p. 2036 | DOI:10.1016/j.aim.2009.07.002
  • Pham Hoang Hiep Pluripolar sets and the subextension in Cegrell's classes, Complex Variables and Elliptic Equations, Volume 53 (2008) no. 7, p. 675 | DOI:10.1080/17476930801966893
  • Urban Cegrell; Lisa Hed Subextension and approximation of negative plurisubharmonic functions, Michigan Mathematical Journal, Volume 56 (2008) no. 3 | DOI:10.1307/mmj/1231770362
  • Per Åhag; Rafał Czyż On the Cegrell classes, Mathematische Zeitschrift, Volume 256 (2007) no. 2, p. 243 | DOI:10.1007/s00209-006-0067-2
  • Jonas Wiklund On subextension of pluriharmonic and plurisubharmonic functions, Arkiv för Matematik, Volume 44 (2006) no. 1, p. 182 | DOI:10.1007/s11512-006-0014-9
  • Slimane Benelkourchi; Bensalem Jennane; Ahmed Zeriahi Polya's inequalities, global uniform integrability and the size of plurisubharmonic lemniscates, Arkiv för Matematik, Volume 43 (2005) no. 1, p. 85 | DOI:10.1007/bf02383612
  • U. Cegrell; S. Kolodziej; A. Zeriahi Subextension of plurisubharmonic functions with weak singularities, Mathematische Zeitschrift, Volume 250 (2005) no. 1, p. 7 | DOI:10.1007/s00209-004-0714-4

Cité par 23 documents. Sources : Crossref

Commentaires - Politique