[Sous-extension des fonctions plurisousharmoniques de masse de Monge–Ampère bornée]
Soit
On démontre alors que pour tout domaine hyperconvexe
Let
It is known that the complex Monge–Ampère operator is well defined on the class
We prove that if
From this result we deduce a global uniform integrability theorem for the classes of plurisubharmonic functions with uniformly bounded Monge–Ampère masses on
Accepté le :
Publié le :
Urban Cegrell 1 ; Ahmed Zeriahi 2
@article{CRMATH_2003__336_4_305_0, author = {Urban Cegrell and Ahmed Zeriahi}, title = {Subextension of plurisubharmonic functions with bounded {Monge{\textendash}Amp\`ere} mass}, journal = {Comptes Rendus. Math\'ematique}, pages = {305--308}, publisher = {Elsevier}, volume = {336}, number = {4}, year = {2003}, doi = {10.1016/S1631-073X(03)00031-1}, language = {en}, }
Urban Cegrell; Ahmed Zeriahi. Subextension of plurisubharmonic functions with bounded Monge–Ampère mass. Comptes Rendus. Mathématique, Volume 336 (2003) no. 4, pp. 305-308. doi : 10.1016/S1631-073X(03)00031-1. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00031-1/
[1] Domains of existence for plurisubharmonic functions, Math. Ann., Volume 238 (1978) no. 1, pp. 67-69
[2] A new capacity for plurisubharmonic functions, Acta Math., Volume 149 (1981), pp. 1-40
[3] Smooth plurisubharmonic functions without subextension, Math. Z., Volume 198 (1988) no. 3, pp. 331-337
[4] On the domains of existence for plurisubharmonic functions, Complex Analysis, Warsaw, 1979, Banach Center Publ., 11, PWN, Warsaw, 1983, pp. 33-37
[5] Pluricomplex energy, Acta Math., Volume 180 (1998), pp. 187-217
[6] U. Cegrell, The general definition of the complex Monge–Ampère operator, Preprint of Umeå University and Mid Sweden University, 2002
[7] Fonctions plurisousharmoniques et ensembles pluripolaires, Séminaire Lelong–Skoda, Lecture Notes in Math., 822, Springer-Verlag, 1980, pp. 61-76
[8] Plurisubharmonic functions on ring domains, Complex Analysis, Univ. Park, 1986, Lecture Notes in Math., 1268, Springer-Verlag, 1987, pp. 111-120
[9] The range of the complex Monge–Ampère operator, Indiana Univ. Math. J., Volume 44 (1995) no. 3, pp. 765-783
[10] The complex Monge–Ampère equation, Acta Math., Volume 180 (1998), pp. 69-117
[11] Pluricomplex Green functions and the Dirichlet problem for complex Monge–Ampère operator, Michigan Math. J., Volume 44 (1997), pp. 579-596
[12] Volume and capacity of sublevel sets of a Lelong class of plurisubharmonic functions, Indiana Univ. Math. J., Volume 50 (2001) no. 1, pp. 671-703
[13] A. Zeriahi, Local uniform integrability and the size of plurisubharmonic lemniscates in terms of Hausdorff–Riesz measures, Prépublication n° 222, Laboratoire Emile Picard, UPS-Toulouse, 2001
- Maximal Subextension and Approximation of m-Subharmonic Function, Michigan Mathematical Journal, Volume -1 (2025) no. -1 | DOI:10.1307/mmj/20236392
- Weighted energy class of m-subharmonic functions, Periodica Mathematica Hungarica (2025) | DOI:10.1007/s10998-025-00626-4
- Cone of Maximal Subextensions of the Plurisubharmonic Functions, Acta Mathematica Vietnamica, Volume 49 (2024) no. 1, p. 83 | DOI:10.1007/s40306-023-00509-1
- Continuity of the Perron–Bremermann envelope of plurisubharmonic functions, Collectanea Mathematica, Volume 75 (2024) no. 3, p. 659 | DOI:10.1007/s13348-023-00405-9
- Approximation of m-subharmonic function with given boundary values, Journal of Mathematical Analysis and Applications, Volume 534 (2024) no. 2, p. 128097 | DOI:10.1016/j.jmaa.2024.128097
- On Some Weighted Classes of m-Subharmonic Functions, Zurnal matematiceskoj fiziki, analiza, geometrii, Volume 20 (2024) no. 1, p. 112 | DOI:10.15407/mag20.01.112
- Continuity of Singular Kähler–Einstein Potentials, International Mathematics Research Notices, Volume 2023 (2023) no. 2, p. 1355 | DOI:10.1093/imrn/rnab294
- Moser–Trudinger type inequalities for complex Monge–Ampère operators and Aubin’s “hypothèse fondamentale”, Annales de la Faculté des sciences de Toulouse : Mathématiques, Volume 31 (2022) no. 3, p. 595 | DOI:10.5802/afst.1704
- Decay near boundary of volume of sublevel sets of m-subharmonic functions, Indagationes Mathematicae, Volume 33 (2022) no. 2, p. 357 | DOI:10.1016/j.indag.2021.09.001
- Subextension of m-Subharmonic Functions, Vietnam Journal of Mathematics, Volume 48 (2020) no. 1, p. 47 | DOI:10.1007/s10013-019-00343-9
- A Note on Maximal Subextensions of Plurisubharmonic Functions, Acta Mathematica Vietnamica, Volume 43 (2018) no. 1, p. 137 | DOI:10.1007/s40306-017-0234-z
- Subextension of plurisubharmonic functions in unbounded hyperconvex domains and applications, Complex Variables and Elliptic Equations, Volume 61 (2016) no. 8, p. 1116 | DOI:10.1080/17476933.2016.1143466
- Subextension of plurisubharmonic functions with boundary values in weighted pluricomplex energy classes, Complex Variables and Elliptic Equations, Volume 60 (2015) no. 11, p. 1580 | DOI:10.1080/17476933.2015.1036244
- Monge–Ampère measures of maximal subextensions of plurisubharmonic functions with given boundary values, Complex Variables and Elliptic Equations, Volume 60 (2015) no. 3, p. 429 | DOI:10.1080/17476933.2014.944177
- Maximal subextensions of plurisubharmonic functions, Annales de la Faculté des sciences de Toulouse : Mathématiques, Volume 20 (2011) no. S2, p. 101 | DOI:10.5802/afst.1307
- APPROXIMATION OF NEGATIVE PLURISUBHARMONIC FUNCTIONS WITH GIVEN BOUNDARY VALUES, International Journal of Mathematics, Volume 21 (2010) no. 09, p. 1135 | DOI:10.1142/s0129167x10006410
- Partial pluricomplex energy and integrability exponents of plurisubharmonic functions, Advances in Mathematics, Volume 222 (2009) no. 6, p. 2036 | DOI:10.1016/j.aim.2009.07.002
- Pluripolar sets and the subextension in Cegrell's classes, Complex Variables and Elliptic Equations, Volume 53 (2008) no. 7, p. 675 | DOI:10.1080/17476930801966893
- Subextension and approximation of negative plurisubharmonic functions, Michigan Mathematical Journal, Volume 56 (2008) no. 3 | DOI:10.1307/mmj/1231770362
- On the Cegrell classes, Mathematische Zeitschrift, Volume 256 (2007) no. 2, p. 243 | DOI:10.1007/s00209-006-0067-2
- On subextension of pluriharmonic and plurisubharmonic functions, Arkiv för Matematik, Volume 44 (2006) no. 1, p. 182 | DOI:10.1007/s11512-006-0014-9
- Polya's inequalities, global uniform integrability and the size of plurisubharmonic lemniscates, Arkiv för Matematik, Volume 43 (2005) no. 1, p. 85 | DOI:10.1007/bf02383612
- Subextension of plurisubharmonic functions with weak singularities, Mathematische Zeitschrift, Volume 250 (2005) no. 1, p. 7 | DOI:10.1007/s00209-004-0714-4
Cité par 23 documents. Sources : Crossref
Commentaires - Politique