[Invariants des variétés symplectiques rationnelles réelles de dimension quatre, et bornes inférieures en géométrie énumérative réelle]
Suivant l'approche de Gromov et Witten, nous construisons des invariants par déformation des variétés symplectiques réelles rationnelles de dimension quatre. Ces invariants fournissent des bornes inférieures pour le nombre de courbes J-holomorphes rationnelles réelles de classe d'homologie donnée passant par une configuration réelle de points donnée.
Following the approach of Gromov and Witten, we construct invariants under deformation of real rational symplectic 4-manifolds. These invariants provide lower bounds for the number of real rational J-holomorphic curves in a given homology class passing through a given real configuration of points.
Accepté le :
Publié le :
Jean-Yves Welschinger 1
@article{CRMATH_2003__336_4_341_0, author = {Jean-Yves Welschinger}, title = {Invariants of real rational symplectic 4-manifolds and lower bounds in real enumerative geometry}, journal = {Comptes Rendus. Math\'ematique}, pages = {341--344}, publisher = {Elsevier}, volume = {336}, number = {4}, year = {2003}, doi = {10.1016/S1631-073X(03)00059-1}, language = {en}, }
TY - JOUR AU - Jean-Yves Welschinger TI - Invariants of real rational symplectic 4-manifolds and lower bounds in real enumerative geometry JO - Comptes Rendus. Mathématique PY - 2003 SP - 341 EP - 344 VL - 336 IS - 4 PB - Elsevier DO - 10.1016/S1631-073X(03)00059-1 LA - en ID - CRMATH_2003__336_4_341_0 ER -
Jean-Yves Welschinger. Invariants of real rational symplectic 4-manifolds and lower bounds in real enumerative geometry. Comptes Rendus. Mathématique, Volume 336 (2003) no. 4, pp. 341-344. doi : 10.1016/S1631-073X(03)00059-1. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00059-1/
[1] Topological properties of real algebraic varieties: Rokhlin's way, Uspekhi Mat. Nauk, Volume 55 (2000), pp. 129-212
[2] On genericity for holomorphic curves in four-dimensional almost-complex manifolds, J. Geom. Anal., Volume 7 (1997), pp. 149-159
[3] Structure of the moduli space in a neighborhood of a cusp-curve and meromorphic hulls, Invent. Math., Volume 136 (1999), pp. 571-602
[4] Gromov–Witten classes, quantum cohomology, and enumerative geometry, Comm. Math. Phys., Volume 164 (1994), pp. 525-562
[5] A survey of symplectic 4-manifolds with b+=1, Turkish J. Math., Volume 20 (1996), pp. 47-60
[6] V.V. Shevchishin, Pseudoholomorphic curves and the symplectic isotopy problem, Preprint , 2000 | arXiv
[7] F. Sottile, Enumerative real algebraic geometry, electronic survey at http://www.maths.univ-rennes1.fr/~raag01/surveys/ERAG/index.html, 2002
- Real Log Curves in Toric Varieties, Tropical Curves, and Log Welschinger Invariants, Annales de l'Institut Fourier, Volume 72 (2022) no. 4, p. 1547 | DOI:10.5802/aif.3507
- Genus decreasing formula for higher genus Welschinger invariants, Mathematische Zeitschrift, Volume 296 (2020) no. 3-4, p. 969 | DOI:10.1007/s00209-020-02458-z
- Refined broccoli invariants, Journal of Algebraic Geometry, Volume 28 (2018) no. 1, p. 1 | DOI:10.1090/jag/705
- Welschinger invariants of blow-ups of symplectic 4-manifolds, Rocky Mountain Journal of Mathematics, Volume 48 (2018) no. 4 | DOI:10.1216/rmj-2018-48-4-1105
- A Congruence Modulo Four for Real Schubert Calculus with Isotropic Flags, Canadian Mathematical Bulletin, Volume 60 (2017) no. 2, p. 309 | DOI:10.4153/cmb-2016-087-2
- Qualitative aspects of counting real rational curves on real K3 surfaces, Geometry Topology, Volume 21 (2017) no. 1, p. 585 | DOI:10.2140/gt.2017.21.585
- Floer trajectories and stabilizing divisors, Journal of Fixed Point Theory and Applications, Volume 19 (2017) no. 2, p. 1165 | DOI:10.1007/s11784-016-0379-8
- Floor diagrams relative to a conic, and GW–W invariants of Del Pezzo surfaces, Advances in Mathematics, Volume 279 (2015), p. 438 | DOI:10.1016/j.aim.2015.04.006
- Enumerative Aspects of the Gross-Siebert Program, Calabi-Yau Varieties: Arithmetic, Geometry and Physics, Volume 34 (2015), p. 337 | DOI:10.1007/978-1-4939-2830-9_11
- Welschinger invariants of real del Pezzo surfaces of degree ≥ 2, International Journal of Mathematics, Volume 26 (2015) no. 08, p. 1550060 | DOI:10.1142/s0129167x15500603
- On Higher Genus Welschinger Invariants of del Pezzo Surfaces, International Mathematics Research Notices, Volume 2015 (2015) no. 16, p. 6907 | DOI:10.1093/imrn/rnu148
- Broccoli curves and the tropical invariance of Welschinger numbers, Advances in Mathematics, Volume 240 (2013), p. 520 | DOI:10.1016/j.aim.2013.03.004
- Lower Bounds in Real Algebraic Geometry and Orientability of Real Toric Varieties, Discrete Computational Geometry, Volume 50 (2013) no. 2, p. 509 | DOI:10.1007/s00454-013-9498-9
- Open Gromov–Witten invariants in dimension six, Mathematische Annalen, Volume 356 (2013) no. 3, p. 1163 | DOI:10.1007/s00208-012-0883-0
- Algorithm 921, ACM Transactions on Mathematical Software, Volume 38 (2012) no. 4, p. 1 | DOI:10.1145/2331130.2331136
- The Secant Conjecture in the Real Schubert Calculus, Experimental Mathematics, Volume 21 (2012) no. 3, p. 252 | DOI:10.1080/10586458.2012.661323
- Some Lower Bounds in the B. and M. Shapiro Conjecture for Flag Varieties, Discrete Computational Geometry, Volume 46 (2011) no. 4, p. 636 | DOI:10.1007/s00454-010-9314-8
- Recursive Formulas for Welschinger Invariants of the Projective Plane, International Mathematics Research Notices (2010) | DOI:10.1093/imrn/rnq096
- Pencils of cubics as tools to solve an interpolation problem, Applicable Algebra in Engineering, Communication and Computing, Volume 18 (2007) no. 1-2, p. 53 | DOI:10.1007/s00200-006-0028-3
- New cases of logarithmic equivalence of Welschinger and Gromov-Witten invariants, Proceedings of the Steklov Institute of Mathematics, Volume 258 (2007) no. 1, p. 65 | DOI:10.1134/s0081543807030078
- Lower bounds for real solutions to sparse polynomial systems, Advances in Mathematics, Volume 204 (2006) no. 1, p. 116 | DOI:10.1016/j.aim.2005.05.016
- A tropical calculation of the Welschinger invariants of real toric Del Pezzo surfaces, Journal of Algebraic Geometry, Volume 15 (2006) no. 2, p. 285 | DOI:10.1090/s1056-3911-06-00434-6
- Twisted complex geometry, Journal of the Australian Mathematical Society, Volume 80 (2006) no. 2, p. 273 | DOI:10.1017/s1446788700013112
- Spinor states of real rational curves in real algebraic convex 3-manifolds and enumerative invariants, Duke Mathematical Journal, Volume 127 (2005) no. 1 | DOI:10.1215/s0012-7094-04-12713-7
- Logarithmic asymptotics of the genus zero Gromov–Witten invariants of the blown up plane, Geometry Topology, Volume 9 (2005) no. 1, p. 483 | DOI:10.2140/gt.2005.9.483
- Invariants of real symplectic 4-manifolds and lower bounds in real enumerative geometry, Inventiones mathematicae, Volume 162 (2005) no. 1, p. 195 | DOI:10.1007/s00222-005-0445-0
- Enumerative tropical algebraic geometry in ℝ², Journal of the American Mathematical Society, Volume 18 (2005) no. 2, p. 313 | DOI:10.1090/s0894-0347-05-00477-7
- Логарифмическая эквивалентность инвариантов Вельшенже и Громова - Виттена, Успехи математических наук, Volume 59 (2004) no. 6, p. 85 | DOI:10.4213/rm797
Cité par 28 documents. Sources : Crossref
Commentaires - Politique