Comptes Rendus
Mathematical Problems in Mechanics
Liquid-like behavior of shape memory alloys
[Comportement liquide d'alliages à mémoire de forme]
Comptes Rendus. Mathématique, Volume 336 (2003) no. 5, pp. 441-446.

Dans cette Note, nous démontrons que la matrice identité est un point intérieur de l'envelope quasiconvexe Kqc d'un ensmble compact K{X𝕄3,3:detX=1} lorsque Kqc contient une configuration de type triple puits. Ceci est le cas en particulier pour les transformations de phase de cubique à tétragonal et de cubique à orthorhombique, et répond à une question discutée dans S. Müller, Microstructures, phase transitions and geometry, in: A. Balog et al. (Eds.), Proceedings European Congress of Mathematics, Progr. Math., Birkhäuser, 1998.

In this Note, we prove that the identity matrix is an inner point of the quasiconvex hull Kqc of a compact set K{X𝕄3,3:detX=1} whenever Kqc contains a three-well configuration. This is in particular the case for the cubic to tetragonal and the cubic to orthorhombic phase transformations, and answers a question discussed in S. Müller, Microstructures, phase transitions and geometry, in: A. Balog et al. (Eds.), Proceedings European Congress of Mathematics, Progr. Math., Birkhäuser, 1998.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(03)00082-7

Georg Dolzmann 1 ; Bernd Kirchheim 2

1 Mathematics Department, University of Maryland, College Park, MD 20742, USA
2 Max Planck Institute for Mathematics in the Sciences, Inselstr. 22-26, 04103 Leipzig, Germany
@article{CRMATH_2003__336_5_441_0,
     author = {Georg Dolzmann and Bernd Kirchheim},
     title = {Liquid-like behavior of shape memory alloys},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {441--446},
     publisher = {Elsevier},
     volume = {336},
     number = {5},
     year = {2003},
     doi = {10.1016/S1631-073X(03)00082-7},
     language = {en},
}
TY  - JOUR
AU  - Georg Dolzmann
AU  - Bernd Kirchheim
TI  - Liquid-like behavior of shape memory alloys
JO  - Comptes Rendus. Mathématique
PY  - 2003
SP  - 441
EP  - 446
VL  - 336
IS  - 5
PB  - Elsevier
DO  - 10.1016/S1631-073X(03)00082-7
LA  - en
ID  - CRMATH_2003__336_5_441_0
ER  - 
%0 Journal Article
%A Georg Dolzmann
%A Bernd Kirchheim
%T Liquid-like behavior of shape memory alloys
%J Comptes Rendus. Mathématique
%D 2003
%P 441-446
%V 336
%N 5
%I Elsevier
%R 10.1016/S1631-073X(03)00082-7
%G en
%F CRMATH_2003__336_5_441_0
Georg Dolzmann; Bernd Kirchheim. Liquid-like behavior of shape memory alloys. Comptes Rendus. Mathématique, Volume 336 (2003) no. 5, pp. 441-446. doi : 10.1016/S1631-073X(03)00082-7. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00082-7/

[1] J.M. Ball; R.D. James Proposed experimental tests of a theory of fine microstructure and the two-well problem, Philos. Trans. Roy. Soc. London Ser. A, Volume 338 (1992), pp. 389-450

[2] K. Bhattacharya Self-accommodation in martensite, Arch. Rational Mech. Anal., Volume 120 (1992), pp. 201-244

[3] K. Bhattacharya; G. Dolzmann Relaxation of some multi-well problems, Proc. Roy. Soc. Edinburgh Sect. A, Volume 131 (2001), pp. 279-320

[4] G. Friesecke Quasiconvex hulls and recoverable strains in shape-memory alloys, TMR Meeting ‘Phase Transitions in Crystalline Solids’, Max Planck Institute for Mathematics in the Sciences, Leipzig, 2000

[5] S. Müller Variational methods for microstructure and phase transitions (F. Bethuel; G. Huisken; S. Müller; K. Steffen; S. Hildebrandt; M. Struwe, eds.), Calculus of Variations and Geometric Evolution Problems, Proc. C.I.M.E. Summer School, Cetraro, 1996, Lecture Notes in Math., 1713, Springer, 1999

  • Allan Chan; Sergio Conti Energy scaling and branched microstructures in a model for shape-memory alloys with SO(2) invariance, M3AS. Mathematical Models Methods in Applied Sciences, Volume 25 (2015) no. 6, pp. 1091-1124 | DOI:10.1142/s0218202515500281 | Zbl:1311.49030
  • Sergio Conti; Georg Dolzmann Relaxation of a model energy for the cubic to tetragonal phase transformation in two dimensions, M3AS. Mathematical Models Methods in Applied Sciences, Volume 24 (2014) no. 14, pp. 2929-2942 | DOI:10.1142/s0218202514500419 | Zbl:1304.49027
  • J. M. Ball; K. Koumatos An investigation of non-planar austenite–martensite interfaces, Mathematical Models and Methods in Applied Sciences, Volume 24 (2014) no. 10, p. 1937 | DOI:10.1142/s0218202514500122
  • Georg Dolzmann Application of Relaxation Methods in Materials Science: From the Macroscopic Response of Elastomers to Crystal Plasticity, IUTAM Symposium on Variational Concepts with Applications to the Mechanics of Materials, Volume 21 (2010), p. 65 | DOI:10.1007/978-90-481-9195-6_5
  • Andrew Lorent The regularisations of the N-well problem by finite elements and by singular perturbation are scaling equivalent in two dimensions, European Series in Applied and Industrial Mathematics (ESAIM): Control, Optimization and Calculus of Variations, Volume 15 (2009) no. 2, pp. 322-366 | DOI:10.1051/cocv:2008039 | Zbl:1161.74044
  • Sergio Conti; Georg Dolzmann; Bernd Kirchheim Existence of Lipschitz minimizers for the three-well problem in solid-solid phase transitions, Annales de l'Institut Henri Poincaré. Analyse Non Linéaire, Volume 24 (2007) no. 6, pp. 953-962 | DOI:10.1016/j.anihpc.2006.10.002 | Zbl:1131.74037
  • James Adams; Sergio Conti; Antonio DeSimone Soft elasticity and microstructure in smectic C elastomers, Continuum Mechanics and Thermodynamics, Volume 18 (2007) no. 6, pp. 319-334 | DOI:10.1007/s00161-006-0031-8 | Zbl:1170.76303

Cité par 7 documents. Sources : Crossref, zbMATH

Commentaires - Politique