[Comportement liquide d'alliages à mémoire de forme]
Dans cette Note, nous démontrons que la matrice identité est un point intérieur de l'envelope quasiconvexe Kqc d'un ensmble compact
In this Note, we prove that the identity matrix is an inner point of the quasiconvex hull Kqc of a compact set
Accepté le :
Publié le :
Georg Dolzmann 1 ; Bernd Kirchheim 2
@article{CRMATH_2003__336_5_441_0, author = {Georg Dolzmann and Bernd Kirchheim}, title = {Liquid-like behavior of shape memory alloys}, journal = {Comptes Rendus. Math\'ematique}, pages = {441--446}, publisher = {Elsevier}, volume = {336}, number = {5}, year = {2003}, doi = {10.1016/S1631-073X(03)00082-7}, language = {en}, }
Georg Dolzmann; Bernd Kirchheim. Liquid-like behavior of shape memory alloys. Comptes Rendus. Mathématique, Volume 336 (2003) no. 5, pp. 441-446. doi : 10.1016/S1631-073X(03)00082-7. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00082-7/
[1] Proposed experimental tests of a theory of fine microstructure and the two-well problem, Philos. Trans. Roy. Soc. London Ser. A, Volume 338 (1992), pp. 389-450
[2] Self-accommodation in martensite, Arch. Rational Mech. Anal., Volume 120 (1992), pp. 201-244
[3] Relaxation of some multi-well problems, Proc. Roy. Soc. Edinburgh Sect. A, Volume 131 (2001), pp. 279-320
[4] Quasiconvex hulls and recoverable strains in shape-memory alloys, TMR Meeting ‘Phase Transitions in Crystalline Solids’, Max Planck Institute for Mathematics in the Sciences, Leipzig, 2000
[5] Variational methods for microstructure and phase transitions (F. Bethuel; G. Huisken; S. Müller; K. Steffen; S. Hildebrandt; M. Struwe, eds.), Calculus of Variations and Geometric Evolution Problems, Proc. C.I.M.E. Summer School, Cetraro, 1996, Lecture Notes in Math., 1713, Springer, 1999
- Energy scaling and branched microstructures in a model for shape-memory alloys with SO(2) invariance, M
AS. Mathematical Models Methods in Applied Sciences, Volume 25 (2015) no. 6, pp. 1091-1124 | DOI:10.1142/s0218202515500281 | Zbl:1311.49030 - Relaxation of a model energy for the cubic to tetragonal phase transformation in two dimensions, M
AS. Mathematical Models Methods in Applied Sciences, Volume 24 (2014) no. 14, pp. 2929-2942 | DOI:10.1142/s0218202514500419 | Zbl:1304.49027 - An investigation of non-planar austenite–martensite interfaces, Mathematical Models and Methods in Applied Sciences, Volume 24 (2014) no. 10, p. 1937 | DOI:10.1142/s0218202514500122
- Application of Relaxation Methods in Materials Science: From the Macroscopic Response of Elastomers to Crystal Plasticity, IUTAM Symposium on Variational Concepts with Applications to the Mechanics of Materials, Volume 21 (2010), p. 65 | DOI:10.1007/978-90-481-9195-6_5
- The regularisations of the
-well problem by finite elements and by singular perturbation are scaling equivalent in two dimensions, European Series in Applied and Industrial Mathematics (ESAIM): Control, Optimization and Calculus of Variations, Volume 15 (2009) no. 2, pp. 322-366 | DOI:10.1051/cocv:2008039 | Zbl:1161.74044 - Existence of Lipschitz minimizers for the three-well problem in solid-solid phase transitions, Annales de l'Institut Henri Poincaré. Analyse Non Linéaire, Volume 24 (2007) no. 6, pp. 953-962 | DOI:10.1016/j.anihpc.2006.10.002 | Zbl:1131.74037
- Soft elasticity and microstructure in smectic C elastomers, Continuum Mechanics and Thermodynamics, Volume 18 (2007) no. 6, pp. 319-334 | DOI:10.1007/s00161-006-0031-8 | Zbl:1170.76303
Cité par 7 documents. Sources : Crossref, zbMATH
Commentaires - Politique