[Courbes géodesiques et l'équation d'Einstein]
On étude le problème du mouvement des ondes solitaires dans le système qui comprend l'équation d'Einstein et l'équation des ondes non linéaires.
Results concerning the problem of motion of test particles in the context of solitary wave solutions of the Einstein-nonlinear wave system are announced.
Accepté le :
Publié le :
David M.A. Stuart 1
@article{CRMATH_2003__336_7_615_0, author = {David M.A. Stuart}, title = {Geodesics and the {Einstein-nonlinear} wave system}, journal = {Comptes Rendus. Math\'ematique}, pages = {615--618}, publisher = {Elsevier}, volume = {336}, number = {7}, year = {2003}, doi = {10.1016/S1631-073X(03)00126-2}, language = {en}, }
David M.A. Stuart. Geodesics and the Einstein-nonlinear wave system. Comptes Rendus. Mathématique, Volume 336 (2003) no. 7, pp. 615-618. doi : 10.1016/S1631-073X(03)00126-2. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00126-2/
[1] Nonlinear scalar field equations, I, Arch. Rational. Mech. Anal., Volume 82 (1983), pp. 313-345
[2] Équations des contraintes sur une variété non compacte, C. R. Acad. Sci. Paris, Sér. A–B, Volume 284 (1977) no. 16, p. A975-A978
[3] Stablility theory of solitary waves in the presence of symmetry, I, J. Funct. Anal., Volume 74 (1987), pp. 160-197
[4] Well-posed quasi-linear second-order hyperbolic systems with applications to nonlinear elastodynamics and general relativity, Arch. Rational Mech. Anal., Volume 63 (1977) no. 3, pp. 273-294
[5] Uniqueness of positive radial solutions of Δu+f(u)=0 in , Trans. Amer. Math. Soc., Volume 339 (1993), pp. 495-505
[6] Modulational approach to stability of non-topological solitons in semilinear wave equations, J. Math. Pures Appl., Volume 80 (2001) no. 1, pp. 51-83
[7] D. Stuart, Geodesics and the Einstein nonlinear wave system, in preparation
[8] D. Stuart, The geodesic hypothesis and non-topological solitons on pseudo-Riemannian manifolds, Preprint
[9] Solitons on pseudo-Riemannian manifolds: stability and motion, Electron. Res. Announc. Amer. Math. Soc., Volume 6 (2000), pp. 75-89 (electronic)
[10] Gravitation and Cosmology, Wiley, New York, 1972
Cité par Sources :
Commentaires - Politique