Comptes Rendus
Mathematical Physics
On sum rules of special form for Jacobi matrices
Comptes Rendus. Mathématique, Volume 336 (2003) no. 7, pp. 611-614.

We use sum rules of a special form to study spectral properties of Jacobi matrices. As a consequence of the main theorem, we obtain a discrete counterpart of a result by Molchanov, Novitskii and Vainberg (Comm. Math. Phys. 216 (2001) 195–213).

Nous appliquons les règles de sommation de Case à l'étude de propriétés spectrales de matrices de Jacobi d'un certain type. Nous obtenons un analogue discret d'un résultat de Molchanov, Novitskii and Vainberg (Comm. Math. Phys. 216 (2001) 195–213) comme un des corollaires du théorème principal.

Received:
Accepted:
Published online:
DOI: 10.1016/S1631-073X(03)00132-8

Stanislav Kupin 1

1 Department of Mathematics, Box 1917, Brown University, Providence, RI 02912, USA
@article{CRMATH_2003__336_7_611_0,
     author = {Stanislav Kupin},
     title = {On sum rules of special form for {Jacobi} matrices},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {611--614},
     publisher = {Elsevier},
     volume = {336},
     number = {7},
     year = {2003},
     doi = {10.1016/S1631-073X(03)00132-8},
     language = {en},
}
TY  - JOUR
AU  - Stanislav Kupin
TI  - On sum rules of special form for Jacobi matrices
JO  - Comptes Rendus. Mathématique
PY  - 2003
SP  - 611
EP  - 614
VL  - 336
IS  - 7
PB  - Elsevier
DO  - 10.1016/S1631-073X(03)00132-8
LA  - en
ID  - CRMATH_2003__336_7_611_0
ER  - 
%0 Journal Article
%A Stanislav Kupin
%T On sum rules of special form for Jacobi matrices
%J Comptes Rendus. Mathématique
%D 2003
%P 611-614
%V 336
%N 7
%I Elsevier
%R 10.1016/S1631-073X(03)00132-8
%G en
%F CRMATH_2003__336_7_611_0
Stanislav Kupin. On sum rules of special form for Jacobi matrices. Comptes Rendus. Mathématique, Volume 336 (2003) no. 7, pp. 611-614. doi : 10.1016/S1631-073X(03)00132-8. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00132-8/

[1] K. Case Orthogonal polynomials from the viewpoint of scattering theory, J. Math. Phys., Volume 15 (1974), pp. 2166-2174

[2] K. Case Orthogonal polynomials, II, J. Math. Phys., Volume 16 (1975), pp. 1435-1440

[3] D. Hundertmark; B. Simon Lieb–Thirring inequalities for Jacobi matrices, J. Approx. Theory, Volume 118 (2002), pp. 106-130

[4] R. Killip, B. Simon, Sum rules for Jacobi matrices and their applications to spectral theory, Ann. Math., to appear

[5] S. Kupin, On a spectral property of Jacobi matrices, Proc. Amer. Math. Soc, accepted

[6] A. Laptev, S. Naboko, O. Safronov, On new relations between spectral properties of Jacobi matrices and their coefficients, to appear

[7] S. Molchanov; M. Novitskii; B. Vainberg First KdV integrals and absolutely continuous spectrum for 1-D Schrödinger operator, Comm. Math. Phys., Volume 216 (2001), pp. 195-213

[8] B. Simon, A. Zlatos, Sum rules and the Szegö condition for orthogonal polynomials on the real line, submitted

[9] P. Yuditskii, private communication

Cited by Sources:

Comments - Policy