[Sur des règles de sommation pour des matrices de Jacobi]
Nous appliquons les règles de sommation de Case à l'étude de propriétés spectrales de matrices de Jacobi d'un certain type. Nous obtenons un analogue discret d'un résultat de Molchanov, Novitskii and Vainberg (Comm. Math. Phys. 216 (2001) 195–213) comme un des corollaires du théorème principal.
We use sum rules of a special form to study spectral properties of Jacobi matrices. As a consequence of the main theorem, we obtain a discrete counterpart of a result by Molchanov, Novitskii and Vainberg (Comm. Math. Phys. 216 (2001) 195–213).
Accepté le :
Publié le :
Stanislav Kupin 1
@article{CRMATH_2003__336_7_611_0, author = {Stanislav Kupin}, title = {On sum rules of special form for {Jacobi} matrices}, journal = {Comptes Rendus. Math\'ematique}, pages = {611--614}, publisher = {Elsevier}, volume = {336}, number = {7}, year = {2003}, doi = {10.1016/S1631-073X(03)00132-8}, language = {en}, }
Stanislav Kupin. On sum rules of special form for Jacobi matrices. Comptes Rendus. Mathématique, Volume 336 (2003) no. 7, pp. 611-614. doi : 10.1016/S1631-073X(03)00132-8. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00132-8/
[1] Orthogonal polynomials from the viewpoint of scattering theory, J. Math. Phys., Volume 15 (1974), pp. 2166-2174
[2] Orthogonal polynomials, II, J. Math. Phys., Volume 16 (1975), pp. 1435-1440
[3] Lieb–Thirring inequalities for Jacobi matrices, J. Approx. Theory, Volume 118 (2002), pp. 106-130
[4] R. Killip, B. Simon, Sum rules for Jacobi matrices and their applications to spectral theory, Ann. Math., to appear
[5] S. Kupin, On a spectral property of Jacobi matrices, Proc. Amer. Math. Soc, accepted
[6] A. Laptev, S. Naboko, O. Safronov, On new relations between spectral properties of Jacobi matrices and their coefficients, to appear
[7] First KdV integrals and absolutely continuous spectrum for 1-D Schrödinger operator, Comm. Math. Phys., Volume 216 (2001), pp. 195-213
[8] B. Simon, A. Zlatos, Sum rules and the Szegö condition for orthogonal polynomials on the real line, submitted
[9] P. Yuditskii, private communication
- Perturbations of orthogonal polynomials with periodic recursion coefficients, Annals of Mathematics, Volume 171 (2010) no. 3, p. 1931 | DOI:10.4007/annals.2010.171.1931
- Absolutely continuous spectrum of a Schrödinger operator on a tree, Journal of Mathematical Physics, Volume 49 (2008) no. 11 | DOI:10.1063/1.3005967
- Jost functions and Jost solutions for Jacobi matrices, I. A necessary and sufficient condition for Szegő asymptotics, Inventiones mathematicae, Volume 165 (2006) no. 1, p. 1 | DOI:10.1007/s00222-005-0485-5
- Asymptotics of the orthogonal polynomials for the Szegő class with a polynomial weight, Journal of Approximation Theory, Volume 139 (2006) no. 1-2, p. 8 | DOI:10.1016/j.jat.2005.02.002
- Higher-order Szegő theorems with two singular points, Journal of Approximation Theory, Volume 134 (2005) no. 1, p. 114 | DOI:10.1016/j.jat.2005.02.003
- Sum rules for Jacobi matrices and divergent Lieb–Thirring sums, Journal of Functional Analysis, Volume 225 (2005) no. 2, p. 371 | DOI:10.1016/j.jfa.2005.04.012
Cité par 6 documents. Sources : Crossref
Commentaires - Politique