[Régularité anisotrope pour le Laplacien et l'opérateur de Maxwell dans un polyèdre]
Nous choisissons d'étudier le problème de Dirichlet pour le Laplacien et le problème de Maxwell électrique, comme représentants de classes plus larges de problèmes intéressant la modélisation de phénomènes physiques stationnaires. Nous énonçons des résultats de régularité dans deux familles d'espaces de Sobolev à poids : l'une, classique, isotrope, et l'autre, nouvelle, anisotrope, où l'on tient compte de l'hypoellipticité le long des arêtes d'un domaine polyédral.
As representatives of a larger class of elliptic boundary value problems of mathematical physics, we study the Dirichlet problem for the Laplace operator and the electric boundary problem for the Maxwell operator. We state regularity results in two families of weighted Sobolev spaces: A classical isotropic family, and a new anisotropic family, where the hypoellipticity along an edge of a polyhedral domain is taken into account.
Accepté le :
Publié le :
Annalisa Buffa 1 ; Martin Costabel 2 ; Monique Dauge 2
@article{CRMATH_2003__336_7_565_0, author = {Annalisa Buffa and Martin Costabel and Monique Dauge}, title = {Anisotropic regularity results for {Laplace} and {Maxwell} operators in a polyhedron}, journal = {Comptes Rendus. Math\'ematique}, pages = {565--570}, publisher = {Elsevier}, volume = {336}, number = {7}, year = {2003}, doi = {10.1016/S1631-073X(03)00138-9}, language = {en}, }
TY - JOUR AU - Annalisa Buffa AU - Martin Costabel AU - Monique Dauge TI - Anisotropic regularity results for Laplace and Maxwell operators in a polyhedron JO - Comptes Rendus. Mathématique PY - 2003 SP - 565 EP - 570 VL - 336 IS - 7 PB - Elsevier DO - 10.1016/S1631-073X(03)00138-9 LA - en ID - CRMATH_2003__336_7_565_0 ER -
Annalisa Buffa; Martin Costabel; Monique Dauge. Anisotropic regularity results for Laplace and Maxwell operators in a polyhedron. Comptes Rendus. Mathématique, Volume 336 (2003) no. 7, pp. 565-570. doi : 10.1016/S1631-073X(03)00138-9. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00138-9/
[1] The finite element method with anisotropic mesh grading for elliptic problems in domains with corners and edges, Math. Methods Appl. Sci., Volume 21 (1998), pp. 519-549
[2] Characterization of the singular part of the solution of Maxwell's equations in a polyhedral domain, Math. Methods Appl. Sci., Volume 22 (1999), pp. 485-499
[3] L2-theory of the Maxwell operator in arbitrary domains, Russian Math. Surveys, Volume 42 (1987) no. 6, pp. 75-96
[4] A singular field method for the solution of Maxwell's equations in polyhedral domains, SIAM J. Appl. Math., Volume 59 (2000), pp. 2028-2044
[5] A. Buffa, M. Costabel, and M. Dauge, Algebraic convergence for anisotropic edge elements in polyhedral domains, Technical report, IMATI-CNR, 2003, in preparation
[6] General edge asymptotics of solutions of second order elliptic boundary value problems I & II, Proc. Roy. Soc. Edinburgh Sect. A, Volume 123 (1993), pp. 109-184
[7] Singularities of electromagnetic fields in polyhedral domains, Arch. Rational Mech. Anal., Volume 151 (2000), pp. 221-276
[8] Weighted regularization of Maxwell equations in polyhedral domains, Numer. Math., Volume 93 (2002), pp. 239-277
[9] Elliptic Boundary Value Problems on Corner Domains, Lecture Notes in Math., Springer-Verlag, Berlin, 1988
[10] The h-p version of the finite element method for solving boundary value problems in polyhedral domains (M. Costabel; M. Dauge; S. Nicaise, eds.), Boundary Value Problems and Integral Equations in Nonsmooth Domains, Luminy, 1993, Dekker, New York, 1995, pp. 101-120
[11] Boundary-value problems for elliptic equations in domains with conical or angular points, Trans. Moscow Math. Soc., Volume 16 (1967), pp. 227-313
[12] Über die Asymptotik der Lösungen elliptischer Randwertaufgaben in der Umgebung von Kanten, Math. Nachr., Volume 138 (1988), pp. 27-53
[13] Elliptic Problems in Domains with Piecewise Smooth Boundaries, de Gruyter Exp. Math., 13, de Gruyter, Berlin, 1994
- Global regularity in a nonlinear relaxed micromorphic continuum on Lipschitz domains, Calculus of Variations and Partial Differential Equations, Volume 64 (2025) no. 2 | DOI:10.1007/s00526-024-02915-1
- Polynomial bounds for the solutions of parametric transmission problems on smooth, bounded domains, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 59 (2025) no. 1, p. 137 | DOI:10.1051/m2an/2024057
- Maxwell’s equations with hypersingularities at a negative index material conical tip, Pure and Applied Analysis, Volume 7 (2025) no. 1, p. 127 | DOI:10.2140/paa.2025.7.127
- Properties of Solutions to a Harmonic-Mapping Type Equation with a Dirichlet Boundary Condition, Acta Mathematica Scientia, Volume 43 (2023) no. 3, p. 1161 | DOI:10.1007/s10473-023-0310-5
- Regularity Estimates and Graded Meshes in Polyhedral Domains, Graded Finite Element Methods for Elliptic Problems in Nonsmooth Domains, Volume 10 (2022), p. 101 | DOI:10.1007/978-3-031-05821-9_5
- A Priori Analysis of an Anisotropic Finite Element Method for Elliptic Equations in Polyhedral Domains, Computational Methods in Applied Mathematics, Volume 21 (2021) no. 1, p. 145 | DOI:10.1515/cmam-2019-0148
- Hölder regularity for Maxwell’s equations under minimal assumptions on the coefficients, Calculus of Variations and Partial Differential Equations, Volume 57 (2018) no. 3 | DOI:10.1007/s00526-018-1358-2
- Regularity and a priori error analysis on anisotropic meshes of a Dirichlet problem in polyhedral domains, Numerische Mathematik, Volume 139 (2018) no. 1, p. 47 | DOI:10.1007/s00211-017-0936-0
- Regularity estimates and optimal finite element methods in Wp1 on polygonal domains, Computers Mathematics with Applications, Volume 74 (2017) no. 9, p. 2089 | DOI:10.1016/j.camwa.2017.02.011
- An anisotropic finite element method on polyhedral domains: Interpolation error analysis, Mathematics of Computation, Volume 87 (2017) no. 312, p. 1567 | DOI:10.1090/mcom/3290
- Weighted analytic regularity in polyhedra, Computers Mathematics with Applications, Volume 67 (2014) no. 4, p. 807 | DOI:10.1016/j.camwa.2013.03.006
- HIGH-ORDER GALERKIN APPROXIMATIONS FOR PARAMETRIC SECOND-ORDER ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS, Mathematical Models and Methods in Applied Sciences, Volume 23 (2013) no. 09, p. 1729 | DOI:10.1142/s0218202513500218
- ANALYTIC REGULARITY FOR LINEAR ELLIPTIC SYSTEMS IN POLYGONS AND POLYHEDRA, Mathematical Models and Methods in Applied Sciences, Volume 22 (2012) no. 08 | DOI:10.1142/s0218202512500157
- Sparse Tensor Product Wavelet Approximation of Singular Functions, SIAM Journal on Mathematical Analysis, Volume 42 (2010) no. 5, p. 2203 | DOI:10.1137/090764694
- Weighted Sobolev spaces and regularity for polyhedral domains, Computer Methods in Applied Mechanics and Engineering, Volume 196 (2007) no. 37-40, p. 3650 | DOI:10.1016/j.cma.2006.10.022
- Continuous Galerkin methods for solving the time-dependent Maxwell equations in 3D geometries, Journal of Computational Physics, Volume 226 (2007) no. 1, p. 1122 | DOI:10.1016/j.jcp.2007.05.029
- Improving the Rate of Convergence of High-Order Finite Elements on Polyhedra II: Mesh Refinements and Interpolation, Numerical Functional Analysis and Optimization, Volume 28 (2007) no. 7-8, p. 775 | DOI:10.1080/01630560701493263
- Continuous Galerkin Methods for Solving Maxwell Equations in 3D Geometries, Numerical Mathematics and Advanced Applications (2006), p. 547 | DOI:10.1007/978-3-540-34288-5_51
- EXPONENTIAL CONVERGENCE OF hp-FEM FOR MAXWELL EQUATIONS WITH WEIGHTED REGULARIZATION IN POLYGONAL DOMAINS, Mathematical Models and Methods in Applied Sciences, Volume 15 (2005) no. 04, p. 575 | DOI:10.1142/s0218202505000480
- Algebraic convergence for anisotropic edge elements in polyhedral domains, Numerische Mathematik, Volume 101 (2005) no. 1, p. 29 | DOI:10.1007/s00211-005-0607-4
Cité par 20 documents. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier