[Sur la classification C1 des champs de vecteurs hyperboliques]
Etant donnés deux germes de champs de vecteurs hyperboliques définis par des équations différentielles autonomes
Given two germs of hyperbolic vector fields associated to autonomous ordinary differential equations
Accepté le :
Publié le :
Zhihua Ren 1 ; Jiazhong Yang 1
@article{CRMATH_2003__336_9_709_0, author = {Zhihua Ren and Jiazhong Yang}, title = {On the {\protect\emph{C}\protect\textsuperscript{1}} normal forms for hyperbolic vector fields}, journal = {Comptes Rendus. Math\'ematique}, pages = {709--712}, publisher = {Elsevier}, volume = {336}, number = {9}, year = {2003}, doi = {10.1016/S1631-073X(03)00173-0}, language = {en}, }
Zhihua Ren; Jiazhong Yang. On the C1 normal forms for hyperbolic vector fields. Comptes Rendus. Mathématique, Volume 336 (2003) no. 9, pp. 709-712. doi : 10.1016/S1631-073X(03)00173-0. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00173-0/
[1] Normal Forms, Invariant, and Local Mappings, Naukova Dumka, Kiev, 1979
[2] P. Bonckaert, V. Naudot, J. Yang, Time logarithmic transformations near a resonant hyperbolic equilibrium point, C. R. Acad. Sci. Paris, to appear
[3] Local Methods in Nonlinear Differential Equations, Springer-Verlag, 1989
[4] Smooth Invariant Manifolds and Normal Forms, World Scientific, Singapore, 1994
[5] Equivalence and decomposition of vector fields about an elementary critical point, Amer. J. Math., Volume 85 (1963), pp. 693-722
[6] Linearization of systems of ordinary differential equations in a neighbourhood of invariant toroidal manifolds, Proc. Moscow Math. Soc., Volume 38 (1979), pp. 187-219
[7] On the structure of local homomorphisms of Euclidean n-space, I, Amer. J. Math., Volume 80 (1958), pp. 623-631
[8] On the structure of local homomorphisms of Euclidean n-space, II, Amer. J. Math., Volume 81 (1959), pp. 578-605
Cité par Sources :
☆ The work is supported by NSFC-10271006.
Commentaires - Politique