[Sur la classification C1 des champs de vecteurs hyperboliques]
Etant donnés deux germes de champs de vecteurs hyperboliques définis par des équations différentielles autonomes et , où , A et B sont des matrices d'ordre n, on démontre que, sous certaines conditions algébriques sur les valeurs propres des matrices et des conditions de non dégénérescensce des terms nonlinéaires, ils sont au moins C1 conjuqués si et seulement si A et B sont semblables.
Given two germs of hyperbolic vector fields associated to autonomous ordinary differential equations and , where , and A and B are n×n matrices, we prove that under some algebraic conditions on the eigenvalues of the matrices and genericity condition on the nonlinear terms, they are at least C1 conjugate if and only if A and B are similar.
Accepté le :
Publié le :
Zhihua Ren 1 ; Jiazhong Yang 1
@article{CRMATH_2003__336_9_709_0, author = {Zhihua Ren and Jiazhong Yang}, title = {On the {\protect\emph{C}\protect\textsuperscript{1}} normal forms for hyperbolic vector fields}, journal = {Comptes Rendus. Math\'ematique}, pages = {709--712}, publisher = {Elsevier}, volume = {336}, number = {9}, year = {2003}, doi = {10.1016/S1631-073X(03)00173-0}, language = {en}, }
Zhihua Ren; Jiazhong Yang. On the C1 normal forms for hyperbolic vector fields. Comptes Rendus. Mathématique, Volume 336 (2003) no. 9, pp. 709-712. doi : 10.1016/S1631-073X(03)00173-0. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00173-0/
[1] Normal Forms, Invariant, and Local Mappings, Naukova Dumka, Kiev, 1979
[2] P. Bonckaert, V. Naudot, J. Yang, Time logarithmic transformations near a resonant hyperbolic equilibrium point, C. R. Acad. Sci. Paris, to appear
[3] Local Methods in Nonlinear Differential Equations, Springer-Verlag, 1989
[4] Smooth Invariant Manifolds and Normal Forms, World Scientific, Singapore, 1994
[5] Equivalence and decomposition of vector fields about an elementary critical point, Amer. J. Math., Volume 85 (1963), pp. 693-722
[6] Linearization of systems of ordinary differential equations in a neighbourhood of invariant toroidal manifolds, Proc. Moscow Math. Soc., Volume 38 (1979), pp. 187-219
[7] On the structure of local homomorphisms of Euclidean n-space, I, Amer. J. Math., Volume 80 (1958), pp. 623-631
[8] On the structure of local homomorphisms of Euclidean n-space, II, Amer. J. Math., Volume 81 (1959), pp. 578-605
Cité par Sources :
☆ The work is supported by NSFC-10271006.
Commentaires - Politique