Comptes Rendus
Probability Theory
Numerical error for SDE: Asymptotic expansion and hyperdistributions
[Erreur du schéma d'Euler pour une EDS et hyperdistribution]
Comptes Rendus. Mathématique, Volume 336 (2003) no. 10, pp. 851-856.

La partie principale de l'erreur dans l'intégration par le schéma d'Euler d'une EDS avec des coefficients réguliers est une distribution de Watanabe généralisée.

The principal part of the error in the Euler scheme for an SDE with smooth coefficients can be expressed as a generalized Watanabe distribution on Wiener space.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(03)00189-4

Paul Malliavin 1 ; Anton Thalmaier 2

1 10, rue Saint Louis en l'Isle, 75004 Paris, France
2 Université d'Évry, laboratoire d'analyse et probabilité, bd François Mitterrand, 91025 Evry cedex, France
@article{CRMATH_2003__336_10_851_0,
     author = {Paul Malliavin and Anton Thalmaier},
     title = {Numerical error for {SDE:} {Asymptotic} expansion and hyperdistributions},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {851--856},
     publisher = {Elsevier},
     volume = {336},
     number = {10},
     year = {2003},
     doi = {10.1016/S1631-073X(03)00189-4},
     language = {en},
}
TY  - JOUR
AU  - Paul Malliavin
AU  - Anton Thalmaier
TI  - Numerical error for SDE: Asymptotic expansion and hyperdistributions
JO  - Comptes Rendus. Mathématique
PY  - 2003
SP  - 851
EP  - 856
VL  - 336
IS  - 10
PB  - Elsevier
DO  - 10.1016/S1631-073X(03)00189-4
LA  - en
ID  - CRMATH_2003__336_10_851_0
ER  - 
%0 Journal Article
%A Paul Malliavin
%A Anton Thalmaier
%T Numerical error for SDE: Asymptotic expansion and hyperdistributions
%J Comptes Rendus. Mathématique
%D 2003
%P 851-856
%V 336
%N 10
%I Elsevier
%R 10.1016/S1631-073X(03)00189-4
%G en
%F CRMATH_2003__336_10_851_0
Paul Malliavin; Anton Thalmaier. Numerical error for SDE: Asymptotic expansion and hyperdistributions. Comptes Rendus. Mathématique, Volume 336 (2003) no. 10, pp. 851-856. doi : 10.1016/S1631-073X(03)00189-4. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00189-4/

[1] V. Bally; D. Talay The law of the Euler scheme for stochastic differential equations. I. Convergence rate of the distribution function, Probab. Theory Related Fields, Volume 104 (1996), pp. 43-60

[2] E. Gobet Weak approximation of killed diffusion using Euler schemes, Stochastic Process. Appl., Volume 87 (2000), pp. 167-197

[3] A. Kohatsu-Higa; S. Ogawa Weak rate of convergence for an Euler scheme of nonlinear SDE's, Monte Carlo Methods Appl., Volume 3 (1997), pp. 327-345

[4] D. Laurent Analyse quasi-sure du schéma d'Euler, C. R. Acad. Sci. Paris, Volume 315 (1992), pp. 599-602

[5] D. Talay; L. Tubaro Expansion of the global error for numerical schemes solving stochastic differential equations, Stochastic Anal. Appl., Volume 8 (1990), pp. 483-509

[6] D. Talay; Z. Zheng Quantiles of the Euler scheme for diffusion processes and financial applications, Math. Finance, Volume 13 (2003), pp. 187-199

[7] E. Teman Analysis of error with Malliavin calculus: application to hedging, Math. Finance, Volume 13 (2003), pp. 201-214

[8] S. Watanabe Analysis of Wiener functionals (Malliavin calculus) and its applications to heat kernels, Ann. Probab., Volume 15 (1987), pp. 1-39

  • István Gyöngy; Annie Millet Accelerated finite elements schemes for parabolic stochastic partial differential equations, Stochastics and Partial Differential Equations: Analysis and Computations, Volume 8 (2020) no. 3, p. 580 | DOI:10.1007/s40072-019-00154-6
  • István Gyöngy On stochastic finite difference schemes, Stochastic Partial Differential Equations: Analysis and Computations, Volume 2 (2014) no. 4, p. 539 | DOI:10.1007/s40072-014-0039-1
  • Eric Joseph Hall Accelerated Spatial Approximations for Time Discretized Stochastic Partial Differential Equations, SIAM Journal on Mathematical Analysis, Volume 44 (2012) no. 5, p. 3162 | DOI:10.1137/12086412x
  • István Gyöngy; Nicolai Krylov Accelerated Numerical Schemes for PDEs and SPDEs, Stochastic Analysis 2010 (2011), p. 131 | DOI:10.1007/978-3-642-15358-7_7
  • István Gyöngy; Nicolai Krylov Accelerated Finite Difference Schemes for Linear Stochastic Partial Differential Equations in the Whole Space, SIAM Journal on Mathematical Analysis, Volume 42 (2010) no. 5, p. 2275 | DOI:10.1137/090781395
  • C.J.S. Alves; A.B. Cruzeiro Monte-Carlo simulation of stochastic differential systems — a geometrical approach, Stochastic Processes and their Applications, Volume 118 (2008) no. 3, p. 346 | DOI:10.1016/j.spa.2007.04.009
  • Nicolas Bouleau Dirichlet Forms Methods: An Application to the Propagation of the Error Due to the Euler Scheme, Seminar on Stochastic Analysis, Random Fields and Applications V, Volume 59 (2007), p. 57 | DOI:10.1007/978-3-7643-8458-6_5
  • Nicolas Bouleau When and how an error yields a Dirichlet form, Journal of Functional Analysis, Volume 240 (2006) no. 2, p. 445 | DOI:10.1016/j.jfa.2006.03.007
  • Julien Guyon Euler scheme and tempered distributions, Stochastic Processes and their Applications, Volume 116 (2006) no. 6, p. 877 | DOI:10.1016/j.spa.2005.11.011
  • A.B. Cruzeiro; P. Malliavin Numerical approximation of diffusions in Rd using normal charts of a Riemannian manifold, Stochastic Processes and their Applications, Volume 116 (2006) no. 7, p. 1088 | DOI:10.1016/j.spa.2006.02.004
  • Nicolas Bouleau Dirichlet Forms in Simulation, Monte Carlo Methods and Applications, Volume 11 (2005) no. 4 | DOI:10.1515/156939605777438541

Cité par 11 documents. Sources : Crossref

Commentaires - Politique