Comptes Rendus
Probability Theory
Numerical error for SDE: Asymptotic expansion and hyperdistributions
[Erreur du schéma d'Euler pour une EDS et hyperdistribution]
Comptes Rendus. Mathématique, Volume 336 (2003) no. 10, pp. 851-856.

La partie principale de l'erreur dans l'intégration par le schéma d'Euler d'une EDS avec des coefficients réguliers est une distribution de Watanabe généralisée.

The principal part of the error in the Euler scheme for an SDE with smooth coefficients can be expressed as a generalized Watanabe distribution on Wiener space.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(03)00189-4

Paul Malliavin 1 ; Anton Thalmaier 2

1 10, rue Saint Louis en l'Isle, 75004 Paris, France
2 Université d'Évry, laboratoire d'analyse et probabilité, bd François Mitterrand, 91025 Evry cedex, France
@article{CRMATH_2003__336_10_851_0,
     author = {Paul Malliavin and Anton Thalmaier},
     title = {Numerical error for {SDE:} {Asymptotic} expansion and hyperdistributions},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {851--856},
     publisher = {Elsevier},
     volume = {336},
     number = {10},
     year = {2003},
     doi = {10.1016/S1631-073X(03)00189-4},
     language = {en},
}
TY  - JOUR
AU  - Paul Malliavin
AU  - Anton Thalmaier
TI  - Numerical error for SDE: Asymptotic expansion and hyperdistributions
JO  - Comptes Rendus. Mathématique
PY  - 2003
SP  - 851
EP  - 856
VL  - 336
IS  - 10
PB  - Elsevier
DO  - 10.1016/S1631-073X(03)00189-4
LA  - en
ID  - CRMATH_2003__336_10_851_0
ER  - 
%0 Journal Article
%A Paul Malliavin
%A Anton Thalmaier
%T Numerical error for SDE: Asymptotic expansion and hyperdistributions
%J Comptes Rendus. Mathématique
%D 2003
%P 851-856
%V 336
%N 10
%I Elsevier
%R 10.1016/S1631-073X(03)00189-4
%G en
%F CRMATH_2003__336_10_851_0
Paul Malliavin; Anton Thalmaier. Numerical error for SDE: Asymptotic expansion and hyperdistributions. Comptes Rendus. Mathématique, Volume 336 (2003) no. 10, pp. 851-856. doi : 10.1016/S1631-073X(03)00189-4. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00189-4/

[1] V. Bally; D. Talay The law of the Euler scheme for stochastic differential equations. I. Convergence rate of the distribution function, Probab. Theory Related Fields, Volume 104 (1996), pp. 43-60

[2] E. Gobet Weak approximation of killed diffusion using Euler schemes, Stochastic Process. Appl., Volume 87 (2000), pp. 167-197

[3] A. Kohatsu-Higa; S. Ogawa Weak rate of convergence for an Euler scheme of nonlinear SDE's, Monte Carlo Methods Appl., Volume 3 (1997), pp. 327-345

[4] D. Laurent Analyse quasi-sure du schéma d'Euler, C. R. Acad. Sci. Paris, Volume 315 (1992), pp. 599-602

[5] D. Talay; L. Tubaro Expansion of the global error for numerical schemes solving stochastic differential equations, Stochastic Anal. Appl., Volume 8 (1990), pp. 483-509

[6] D. Talay; Z. Zheng Quantiles of the Euler scheme for diffusion processes and financial applications, Math. Finance, Volume 13 (2003), pp. 187-199

[7] E. Teman Analysis of error with Malliavin calculus: application to hedging, Math. Finance, Volume 13 (2003), pp. 201-214

[8] S. Watanabe Analysis of Wiener functionals (Malliavin calculus) and its applications to heat kernels, Ann. Probab., Volume 15 (1987), pp. 1-39

Cité par Sources :

Commentaires - Politique