[Récurrence et généricité]
We prove a C1-connecting lemma for pseudo-orbits of diffeomorphisms on compact manifolds. We explore some consequences for C1-generic diffeomorphisms. For instance, C1-generic conservative diffeomorphisms are transitive.
Nous montrons un lemme de connexion C1 pour les pseudo-orbites des difféomorphismes des variétés compactes. Nous explorons alors les conséquences pour les difféomorphismes C1-génériques. Par exemple, les difféomorphismes conservatifs C1-génériques sont transitifs.
Accepté le :
Publié le :
Christian Bonatti 1 ; Sylvain Crovisier 1
@article{CRMATH_2003__336_10_839_0, author = {Christian Bonatti and Sylvain Crovisier}, title = {Recurrence and genericity}, journal = {Comptes Rendus. Math\'ematique}, pages = {839--844}, publisher = {Elsevier}, volume = {336}, number = {10}, year = {2003}, doi = {10.1016/S1631-073X(03)00203-6}, language = {en}, }
Christian Bonatti; Sylvain Crovisier. Recurrence and genericity. Comptes Rendus. Mathématique, Volume 336 (2003) no. 10, pp. 839-844. doi : 10.1016/S1631-073X(03)00203-6. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00203-6/
[1] Création de connexions en topologie C1, Ergodic Theory Dynamical Systems, Volume 21 (2001), pp. 339-381
[2] Ch. Bonatti, L.J. Dı́az, On maximal transitive sets of generic diffeomorphisms, Publ. Math. Inst. Hautes Études Sci., to appear
[3] Homoclinic classes for
[4] Isolated invariant sets and Morse index, CBMS, 38, American Mathematical Society, 1978
[5] Connecting invariant manifolds and the solution of the C1-stability and
[6] Some open problems in dynamical systems, Proceedings of the International Congress of Mathematicians, Vol. II, Berlin, 1998, Doc. Math., Extra Vol. II (1998), pp. 797-808 (electronic)
[7] Attractors: persistence, and density of their basins, Trans. Amer. Math. Soc., Volume 269 (1982), pp. 247-271
[8] Lyapunopv stability of ω-limit sets, Discrete Contin. Dynam. Systems, Volume 8 (2002), pp. 671-674
[9] The closing lemma, Ergodic Theory Dynamical Systems, Volume 3 (1983), pp. 261-314
[10] The C1-closing lemma, including Hamiltonians, Ergodic Theory Dynamical Systems, Volume 3 (1983), pp. 261-314
[11] C1-connecting lemmas, Trans. Amer. Math. Soc., Volume 352 (2000), pp. 5213-5230
- Topological pressure for conservative
-diffeomorphisms with no dominated splitting, Dynamical Systems, Volume 39 (2024) no. 1, pp. 31-61 | DOI:10.1080/14689367.2023.2230912 | Zbl:7792701 - On the stable ergodicity of diffeomorphisms with dominated splitting, Nonlinearity, Volume 32 (2019) no. 2, pp. 445-463 | DOI:10.1088/1361-6544/aaea93 | Zbl:1410.37030
- Asymptotic orbital shadowing property for diffeomorphisms, Open Mathematics, Volume 17 (2019), pp. 191-201 | DOI:10.1515/math-2019-0002 | Zbl:1436.37033
- Towards a global view of dynamical systems, for the
-topology, Ergodic Theory and Dynamical Systems, Volume 31 (2011) no. 4, pp. 959-993 | DOI:10.1017/s0143385710000891 | Zbl:1256.37006 - Homoclinic Bifurcations, Dominated Splitting, and Robust Transitivity, Volume 1 (2006), p. 327 | DOI:10.1016/s1874-575x(06)80029-9
- On Peixoto's conjecture for flows on non-orientable 2-manifolds, Proceedings of the American Mathematical Society, Volume 133 (2005) no. 4, pp. 1063-1074 | DOI:10.1090/s0002-9939-04-07687-7 | Zbl:1058.37017
- Collision, explosion and collapse of homoclinic classes, Nonlinearity, Volume 17 (2004) no. 3, p. 1001 | DOI:10.1088/0951-7715/17/3/013
Cité par 7 documents. Sources : Crossref, zbMATH
Commentaires - Politique