[Récurrence et généricité]
We prove a C1-connecting lemma for pseudo-orbits of diffeomorphisms on compact manifolds. We explore some consequences for C1-generic diffeomorphisms. For instance, C1-generic conservative diffeomorphisms are transitive.
Nous montrons un lemme de connexion C1 pour les pseudo-orbites des difféomorphismes des variétés compactes. Nous explorons alors les conséquences pour les difféomorphismes C1-génériques. Par exemple, les difféomorphismes conservatifs C1-génériques sont transitifs.
Accepté le :
Publié le :
Christian Bonatti 1 ; Sylvain Crovisier 1
@article{CRMATH_2003__336_10_839_0,
author = {Christian Bonatti and Sylvain Crovisier},
title = {Recurrence and genericity},
journal = {Comptes Rendus. Math\'ematique},
pages = {839--844},
year = {2003},
publisher = {Elsevier},
volume = {336},
number = {10},
doi = {10.1016/S1631-073X(03)00203-6},
language = {en},
}
Christian Bonatti; Sylvain Crovisier. Recurrence and genericity. Comptes Rendus. Mathématique, Volume 336 (2003) no. 10, pp. 839-844. doi: 10.1016/S1631-073X(03)00203-6
[1] Création de connexions en topologie C1, Ergodic Theory Dynamical Systems, Volume 21 (2001), pp. 339-381
[2] Ch. Bonatti, L.J. Dı́az, On maximal transitive sets of generic diffeomorphisms, Publ. Math. Inst. Hautes Études Sci., to appear
[3] Homoclinic classes for -generic vector fields, Ergodic Theory Dynamical Systems, Volume 23 (2003), pp. 1-13
[4] Isolated invariant sets and Morse index, CBMS, 38, American Mathematical Society, 1978
[5] Connecting invariant manifolds and the solution of the C1-stability and -stability conjectures for flows, Ann. of Math., Volume 145 (1997), pp. 81-137
[6] Some open problems in dynamical systems, Proceedings of the International Congress of Mathematicians, Vol. II, Berlin, 1998, Doc. Math., Extra Vol. II (1998), pp. 797-808 (electronic)
[7] Attractors: persistence, and density of their basins, Trans. Amer. Math. Soc., Volume 269 (1982), pp. 247-271
[8] Lyapunopv stability of ω-limit sets, Discrete Contin. Dynam. Systems, Volume 8 (2002), pp. 671-674
[9] The closing lemma, Ergodic Theory Dynamical Systems, Volume 3 (1983), pp. 261-314
[10] The C1-closing lemma, including Hamiltonians, Ergodic Theory Dynamical Systems, Volume 3 (1983), pp. 261-314
[11] C1-connecting lemmas, Trans. Amer. Math. Soc., Volume 352 (2000), pp. 5213-5230
Cité par Sources :
Commentaires - Politique
