[Une remarque sur les difféomorphismes conservatifs]
On montre qu'un difféomorphisme stablement ergodique peut être
We show that a stably ergodic diffeomorphism can be
Accepté le :
Publié le :
Jairo Bochi 1 ; Bassam R. Fayad 2 ; Enrique Pujals 3
@article{CRMATH_2006__342_10_763_0, author = {Jairo Bochi and Bassam R. Fayad and Enrique Pujals}, title = {A remark on conservative diffeomorphisms}, journal = {Comptes Rendus. Math\'ematique}, pages = {763--766}, publisher = {Elsevier}, volume = {342}, number = {10}, year = {2006}, doi = {10.1016/j.crma.2006.03.028}, language = {en}, }
Jairo Bochi; Bassam R. Fayad; Enrique Pujals. A remark on conservative diffeomorphisms. Comptes Rendus. Mathématique, Volume 342 (2006) no. 10, pp. 763-766. doi : 10.1016/j.crma.2006.03.028. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.03.028/
[1] A. Arbieto, C. Matheus, A pasting lemma and some applications for conservative systems, Ergodic Theory Dynam. Systems, in press
[2] Random Dynamical Systems, Springer-Verlag, New York, 1998
[3] Genericity of zero Lyapunov exponents, Ergodic Theory Dynam. Systems, Volume 22 (2002), pp. 1667-1696
[4] The Lyapunov exponents of generic volume preserving and symplectic maps, Ann. of Math., Volume 161 (2005), pp. 1423-1485
[5] Removing zero Lyapunov exponents, Ergodic Theory Dynam. Systems, Volume 23 (2003), pp. 1655-1670
[6] A
[7] SRB measures for partially hyperbolic systems whose central direction is mostly contracting, Israel J. Math., Volume 115 (2000), pp. 157-193
[8] Partial hyperbolicity, Lyapunov exponents, and stable ergodicity, J. Statist. Phys., Volume 108 (2002), pp. 927-942
[9] Every compact manifold carries a completely hyperbolic diffeomorphism, Ergodic Theory Dynam. Systems, Volume 22 (2002), pp. 409-435
[10] Stably ergodic diffeomorphisms, Ann. of Math., Volume 140 (1994), pp. 295-329
[11] Propriétés ergodiques des mesures de Sinaï, Publ. Math. IHES, Volume 59 (1984), pp. 163-188
[12] Pathological foliations and removable zero exponents, Invent. Math., Volume 139 (2000), pp. 495-508
[13] Stably ergodic diffeomorphisms which are not partially hyperbolic, Israel J. Math., Volume 142 (2004), pp. 315-344
- Hyperbolicity and Rigidity for Fibred Partially Hyperbolic Systems, Journal of Dynamics and Differential Equations (2024) | DOI:10.1007/s10884-023-10343-6
-
density of stable ergodicity, Advances in Mathematics, Volume 379 (2021), p. 69 (Id/No 107496) | DOI:10.1016/j.aim.2020.107496 | Zbl:1458.37048 - Infimum of the metric entropy of volume preserving Anosov systems, Discrete and Continuous Dynamical Systems, Volume 37 (2017) no. 9, pp. 4767-4783 | DOI:10.3934/dcds.2017205 | Zbl:1368.37030
-
-density of (non-uniform) hyperbolicity in partially hyperbolic symplectic diffeomorphisms, Commentarii Mathematici Helvetici, Volume 91 (2016) no. 2, pp. 357-396 | DOI:10.4171/cmh/389 | Zbl:1365.37032 - (Semi)continuity of the entropy of Sinai probability measures for partially hyperbolic diffeomorphisms, Journal of Mathematical Analysis and Applications, Volume 434 (2016) no. 2, pp. 1123-1137 | DOI:10.1016/j.jmaa.2015.09.042 | Zbl:1359.37074
- Diffeomorphisms with positive metric entropy, Publications Mathématiques, Volume 124 (2016), pp. 319-347 | DOI:10.1007/s10240-016-0086-4 | Zbl:1362.37017
- Contributions to the geometric and ergodic theory of conservative flows, Ergodic Theory and Dynamical Systems, Volume 33 (2013) no. 6, pp. 1709-1731 | DOI:10.1017/etds.2012.110 | Zbl:1291.37042
- NON-UNIFORM HYPERBOLICITY FOR INFINITE DIMENSIONAL COCYCLES, Stochastics and Dynamics, Volume 13 (2013) no. 03, p. 1250026 | DOI:10.1142/s0219493712500268
- Some results on perturbations of Lyapunov exponents, Discrete and Continuous Dynamical Systems, Volume 32 (2012) no. 12, p. 4287 | DOI:10.3934/dcds.2012.32.4287
- Nonuniform hyperbolicity, global dominated splittings and generic properties of volume-preserving diffeomorphisms, Transactions of the American Mathematical Society, Volume 364 (2012) no. 6, pp. 2883-2907 | DOI:10.1090/s0002-9947-2012-05423-7 | Zbl:1257.37022
- Trying to Characterize Robust and Generic Dynamics, New Trends in Mathematical Physics (2009), p. 549 | DOI:10.1007/978-90-481-2810-5_37
- A pasting Lemma and some applications for conservative systems, Ergodic Theory and Dynamical Systems, Volume 27 (2007) no. 5, pp. 1399-1417 | DOI:10.1017/s014338570700017x | Zbl:1142.37025
- Removing zero Lyapunov exponents in volume-preserving flows, Nonlinearity, Volume 20 (2007) no. 4, p. 1007 | DOI:10.1088/0951-7715/20/4/011
Cité par 13 documents. Sources : Crossref, zbMATH
Commentaires - Politique