[Contrôle, observation et décroissance polynomiale pour un système couplé ondes-chaleur]
On considère un modèle couplé ondes-chaleur 1-d. L'intervalle (−1,1) est divisé en deux parties. Dans (−1,0) l'équation des ondes a lieu pour la variable z tandis que, dans (0,1), y résout l'équation de la chaleur. Au point d'interface on impose les conditions de transmission y=zt et yx=zx. Ces sont des conditions plus naturelles dans le contexte de l'interaction fluide–structure. Dans cette Note, suivant les techniques developpées dans nos travaux précédents on donne des résultats optimaux de contrôle et d'observation depuis le bord parabolique x=1 et hyperbolique x=−1 et on montre la décroissance polynomiale des solutions régulières.
This Note is devoted to study the control, observation and polynomial decay of a linearized 1-d model for fluid–structure interaction, where a wave and a heat equation evolve in two bounded intervals, with natural transmission conditions at the point of interface. These conditions couple, in particular, the heat unknown with the velocity of the wave solution. The controllability and observability of the system through the wave component are derived from sidewise energy estimate and Carleman inequalities. As for the control and observation through the heat component, we need to develop first a careful spectral high frequency analysis for the underlying semigroup, which yields a new Ingahm-type inequality. It is shown that the controllable/observable subspace for both cases are quite different. Also, we obtain a sharp polynomial decay rate for the energy of smooth solutions.
Accepté le :
Publié le :
Xu Zhang 1, 2 ; Enrique Zuazua 2
@article{CRMATH_2003__336_10_823_0, author = {Xu Zhang and Enrique Zuazua}, title = {Control, observation and polynomial decay for a coupled heat-wave system}, journal = {Comptes Rendus. Math\'ematique}, pages = {823--828}, publisher = {Elsevier}, volume = {336}, number = {10}, year = {2003}, doi = {10.1016/S1631-073X(03)00204-8}, language = {en}, }
Xu Zhang; Enrique Zuazua. Control, observation and polynomial decay for a coupled heat-wave system. Comptes Rendus. Mathématique, Volume 336 (2003) no. 10, pp. 823-828. doi : 10.1016/S1631-073X(03)00204-8. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00204-8/
[1] Contrôlabilité exacte, stabilisation et perturbations de systèmes distribués. Tome 1 : Contrôlabilité exacte, RMA, 8, Masson, Paris, 1988
[2] X. Zhang, E. Zuazua, Polynomial decay and control of a 1-d model for fluid–structure interaction, C. R. Acad. Sci. Paris, Ser. I, to appear
[3] X. Zhang, E. Zuazua, Polynomial decay and control of a hyperbolic-parabolic coupled system, Preprint
[4] E. Zuazua, Contrôlabilité exacte en un temps arbitrairement petit de quelques modèles de plaques, Appendix I in [1], 465–491
[5] Null control of a 1-d model of mixed hyperbolic-parabolic type (J.L. Menaldi et al., eds.), Optimal Control and Partial Differential Equations, IOS Press, 2001, pp. 198-210
- Sharp polynomial decay rate of multi-link hyperbolic-parabolic systems with different network configurations, Evolution Equations and Control Theory, Volume 13 (2024) no. 1, pp. 12-25 | DOI:10.3934/eect.2023034 | Zbl:1532.35067
- The null controllability of transmission wave-Schrödinger system with a boundary control, Journal of Dynamical and Control Systems, Volume 30 (2024) no. 3, p. 22 (Id/No 27) | DOI:10.1007/s10883-024-09693-1 | Zbl:1544.93051
- On the controllability of a system coupling Kuramoto-Sivashinsky-Korteweg-de Vries and transport equations, MCSS. Mathematics of Control, Signals, and Systems, Volume 36 (2024) no. 4, pp. 875-926 | DOI:10.1007/s00498-024-00390-9 | Zbl:7927397
- Sharp decay rates of degenerate hyperbolic-parabolic coupled system: rectangular domain vs one-dimensional domain, Journal of Differential Equations, Volume 349 (2023), pp. 53-82 | DOI:10.1016/j.jde.2022.12.005 | Zbl:1507.35039
- Stability and Gevrey regularity for some transmission systems involving a degenerate parabolic component, Journal of Evolution Equations, Volume 23 (2023) no. 2, p. 31 (Id/No 26) | DOI:10.1007/s00028-023-00876-0 | Zbl:1529.74015
- The exponential stabilization of a heat-wave coupled system and its approximation, Journal of Mathematical Analysis and Applications, Volume 521 (2023) no. 1, p. 20 (Id/No 126927) | DOI:10.1016/j.jmaa.2022.126927 | Zbl:1506.65134
- Exact controllability of the transmission string-beam equations with a single boundary control, Mathematical Methods in the Applied Sciences, Volume 46 (2023) no. 14, pp. 15352-15366 | DOI:10.1002/mma.9382 | Zbl:1536.93092
- Boundary controllability of a coupled inhomogeneous plates system, The Journal of Geometric Analysis, Volume 33 (2023) no. 2, p. 23 (Id/No 55) | DOI:10.1007/s12220-022-01115-7 | Zbl:1504.35597
- Sharp decay estimates for semigroups associated with some one-dimensional fluid-structure interactions involving degeneracy, SIAM Journal on Control and Optimization, Volume 60 (2022) no. 5, pp. 2787-2810 | DOI:10.1137/21m141854x | Zbl:1498.93663
- Energy Decay Estimates of Elastic Transmission Wave/Beam Systems with a Local Kelvin–Voigt Damping, Stabilization of Kelvin-Voigt Damped Systems, Volume 47 (2022), p. 85 | DOI:10.1007/978-3-031-12519-5_5
- Stability of wave networks on elastic and viscoelastic media, Acta Applicandae Mathematicae, Volume 175 (2021), p. 40 (Id/No 11) | DOI:10.1007/s10440-021-00437-y | Zbl:1476.35055
- Frequency domain approach to decay rates for a coupled hyperbolic-parabolic system, Communications on Pure and Applied Analysis, Volume 20 (2021) no. 7-8, pp. 2789-2809 | DOI:10.3934/cpaa.2021119 | Zbl:1500.35048
- Thermoelastic Investigation of Carbon-Fiber-Reinforced Composites Using a Drop-Weight Impact Test, Applied Sciences, Volume 11 (2020) no. 1, p. 207 | DOI:10.3390/app11010207
- Explicit decay rate for a degenerate hyperbolic-parabolic coupled system, European Series in Applied and Industrial Mathematics (ESAIM): Control, Optimization and Calculus of Variations, Volume 26 (2020), p. 20 (Id/No 116) | DOI:10.1051/cocv/2020040 | Zbl:1459.35041
- Stability of two weakly coupled elastic beams with partially local damping, Mathematical Problems in Engineering, Volume 2020 (2020), p. 9 (Id/No 7169526) | DOI:10.1155/2020/7169526 | Zbl:1544.35172
- , 2019 IEEE 58th Conference on Decision and Control (CDC) (2019), p. 262 | DOI:10.1109/cdc40024.2019.9029595
- Spectrum and stability of a
heat-wave coupled system with dynamical boundary control, Mathematical Problems in Engineering, Volume 2019 (2019), p. 9 (Id/No 5716729) | DOI:10.1155/2019/5716729 | Zbl:1435.35196 - Energy decay estimates of elastic transmission wave/beam systems with a local Kelvin-Voigt damping, International Journal of Control, Volume 89 (2016) no. 10, pp. 1933-1950 | DOI:10.1080/00207179.2015.1135509 | Zbl:1364.35043
- Decay rates for
heat-wave planar networks, Networks and Heterogeneous Media, Volume 11 (2016) no. 4, pp. 655-692 | DOI:10.3934/nhm.2016013 | Zbl:1355.35023 - A note on optimal regularity and regularizing effects of point mass coupling for a heat-wave system, Journal of Mathematical Analysis and Applications, Volume 425 (2015) no. 2, pp. 1134-1147 | DOI:10.1016/j.jmaa.2015.01.018 | Zbl:1310.35056
- Boundary control for a kind of coupled PDE-ODE system, Journal of Control Science and Engineering, Volume 2014 (2014), p. 8 (Id/No 946736) | DOI:10.1155/2014/946736 | Zbl:1298.93280
- , 2011 Chinese Control and Decision Conference (CCDC) (2011), p. 320 | DOI:10.1109/ccdc.2011.5968195
- Stabilization for a coupled PDE-ODE control system, Journal of the Franklin Institute, Volume 348 (2011) no. 8, pp. 2142-2155 | DOI:10.1016/j.jfranklin.2011.06.008 | Zbl:1231.93095
- State and output feedback boundary control for a coupled PDE-ODE system, Systems Control Letters, Volume 60 (2011) no. 8, pp. 540-545 | DOI:10.1016/j.sysconle.2011.04.011 | Zbl:1236.93076
- , 49th IEEE Conference on Decision and Control (CDC) (2010), p. 4042 | DOI:10.1109/cdc.2010.5718141
- Higher-dimensional Wave Equation, Elementary Feedback Stabilization of the Linear Reaction-Convection-Diffusion Equation and the Wave Equation, Volume 66 (2010), p. 233 | DOI:10.1007/978-3-642-04613-1_6
- Optimal decay rates and the selfadjoint property in overdamped systems, Journal of Differential Equations, Volume 246 (2009) no. 7, pp. 2813-2828 | DOI:10.1016/j.jde.2009.01.010 | Zbl:1179.35064
- Observability inequality of logarithmic type and estimation of the cost function of solutions to hyperbolic equations, European Series in Applied and Industrial Mathematics (ESAIM): Control, Optimization and Calculus of Variations, Volume 14 (2008) no. 2, pp. 318-342 | DOI:10.1051/cocv:2007052 | Zbl:1139.35016
- Controllability and Observability of Partial Differential Equations: Some Results and Open Problems, Volume 3 (2007), p. 527 | DOI:10.1016/s1874-5717(07)80010-7
- Long-time behavior of a coupled heat-wave system arising in fluid-structure interaction, Archive for Rational Mechanics and Analysis, Volume 184 (2007) no. 1, pp. 49-120 | DOI:10.1007/s00205-006-0020-x | Zbl:1178.74075
- Asymptotic Behavior of a Hyperbolic-parabolic Coupled System Arising in Fluid-structure Interaction, Free Boundary Problems, Volume 154 (2006), p. 445 | DOI:10.1007/978-3-7643-7719-9_43
- Propagation, Observation, and Control of Waves Approximated by Finite Difference Methods, SIAM Review, Volume 47 (2005) no. 2, p. 197 | DOI:10.1137/s0036144503432862
- Are viscoelastic flows under control or out of control?, Systems Control Letters, Volume 54 (2005) no. 12, pp. 1183-1193 | DOI:10.1016/j.sysconle.2005.04.006 | Zbl:1129.93325
- Exponential stability for the wave equations with local Kelvin-Voigt damping., Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 339 (2004) no. 11, pp. 769-774 | DOI:10.1016/j.crma.2004.09.029 | Zbl:1056.35107
- Polynomial decay and control of a 1D hyperbolic-parabolic coupled system, Journal of Differential Equations, Volume 204 (2004) no. 2, pp. 380-438 | DOI:10.1016/j.jde.2004.02.004 | Zbl:1064.93008
Cité par 35 documents. Sources : Crossref, zbMATH
Commentaires - Politique