Dans le cadre de la contrôlabilité exacte, on présente dans cette Note une famille paramétrée de schémas aux différences finis de l'équation des ondes 1-D. Ces schémas diffèrent des schémas centrés usuels par l'ajout de termes d'ordre
We present a parameterized family of finite difference schemes for the exact controllability of the 1-D wave equation. These schemes differ from the usual centered ones by additional terms of order to
Accepté le :
Publié le :
Arnaud Münch 1
@article{CRMATH_2004__339_10_733_0, author = {Arnaud M\"unch}, title = {Famille de sch\'emas implicites uniform\'ement contr\^olables pour l'\'equation des ondes {1-D}}, journal = {Comptes Rendus. Math\'ematique}, pages = {733--738}, publisher = {Elsevier}, volume = {339}, number = {10}, year = {2004}, doi = {10.1016/j.crma.2004.09.037}, language = {fr}, }
Arnaud Münch. Famille de schémas implicites uniformément contrôlables pour l'équation des ondes 1-D. Comptes Rendus. Mathématique, Volume 339 (2004) no. 10, pp. 733-738. doi : 10.1016/j.crma.2004.09.037. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2004.09.037/
[1] C. Castro, S. Micu, Boundary controllability of a semi-discrete linear 1-D wave equation with mixed finite elements, SIAM J. Numer. Anal., submitted for publication
[2] Higher-Order Numerical Methods for Transcient Wave Equations, Scientific Computation, Springer, 2002
[3] A numerical approach to the exact boundary controllability of the wave equation, Japan. J. Appl. Math., Volume 3 (1990), pp. 1-76
[4] Some trigonometrical inequalities with applications to the theory of series, Math. Z., Volume 41 (1936), pp. 367-369
[5] Dispersion-corrected explicit integration of the wave equation, Comput. Methods Appl. Mech. Engrg., Volume 191 (2001), pp. 975-987
[6] Uniform boundary controllability of a semi-discrete 1-D wave equation, Numer. Math., Volume 91 (2002), pp. 723-728
[7] Uniform boundary controllability of a discrete 1-D wave equation, Systems Control Lett., Volume 48 (2003) no. 3–4, pp. 261-280
[8] Discrete Ingham inequalities and applications, C. R. Acad. Sci. Paris, Ser. I, Volume 338 (2004), pp. 281-286
[9] Propagation, observation, control and numerical approximation of waves http://www.uam.es/enrique.zuazua/ (Preprint, available at)
Cité par Sources :
Commentaires - Politique