Comptes Rendus
Mathematical Problems in Mechanics
On rigid displacements and their relation to the infinitesimal rigid displacement lemma in shell theory
[Déplacements rigides et leur relation au lemme du mouvement rigide infinitésimal en théorie des coques]
Comptes Rendus. Mathématique, Volume 336 (2003) no. 11, pp. 959-966.

Soit ω un ouvert connexe de 2 et θ une immersion de ω dans 3 . On établit que l'ensemble formé par les déplacements rigides de la surface θ(ω) est une sous-variété de dimension 6 et de classe 𝒞 de l'espace 𝐇 1 (ω). On montre aussi que les déplacements rigides infinitésimaux de la même surface θ(ω) engendrent le plan tangent à l'origine à cette sous-variété.

Let ω be an open connected subset of 2 and let θ be an immersion from ω into 3 . It is established that the set formed by all rigid displacements of the surface θ(ω) is a submanifold of dimension 6 and of class 𝒞 of the space 𝐇 1 (ω). It is shown that the infinitesimal rigid displacements of the same surface θ(ω) span the tangent space at the origin to this submanifold.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(03)00205-X

Philippe G. Ciarlet 1 ; Cristinel Mardare 2

1 Department of Mathematics, City University of Hong Kong, 83, Tat Chee Avenue, Kowloon, Hong Kong
2 Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie, 4, place Jussieu, 75005 Paris, France
@article{CRMATH_2003__336_11_959_0,
     author = {Philippe G. Ciarlet and Cristinel Mardare},
     title = {On rigid displacements and their relation to the infinitesimal rigid displacement lemma in shell theory},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {959--966},
     publisher = {Elsevier},
     volume = {336},
     number = {11},
     year = {2003},
     doi = {10.1016/S1631-073X(03)00205-X},
     language = {en},
}
TY  - JOUR
AU  - Philippe G. Ciarlet
AU  - Cristinel Mardare
TI  - On rigid displacements and their relation to the infinitesimal rigid displacement lemma in shell theory
JO  - Comptes Rendus. Mathématique
PY  - 2003
SP  - 959
EP  - 966
VL  - 336
IS  - 11
PB  - Elsevier
DO  - 10.1016/S1631-073X(03)00205-X
LA  - en
ID  - CRMATH_2003__336_11_959_0
ER  - 
%0 Journal Article
%A Philippe G. Ciarlet
%A Cristinel Mardare
%T On rigid displacements and their relation to the infinitesimal rigid displacement lemma in shell theory
%J Comptes Rendus. Mathématique
%D 2003
%P 959-966
%V 336
%N 11
%I Elsevier
%R 10.1016/S1631-073X(03)00205-X
%G en
%F CRMATH_2003__336_11_959_0
Philippe G. Ciarlet; Cristinel Mardare. On rigid displacements and their relation to the infinitesimal rigid displacement lemma in shell theory. Comptes Rendus. Mathématique, Volume 336 (2003) no. 11, pp. 959-966. doi : 10.1016/S1631-073X(03)00205-X. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00205-X/

[1] R. Abraham; J.E. Marsden; T. Ratiu Manifolds, Tensor Analysis, and Applications, Springer-Verlag, New York, 1988

[2] J.L. Akian A simple proof of the ellipticity of Koiter's model, Anal. Appl., Volume 1 (2003), pp. 1-16

[3] S. Anicic; H. Le Dret; A. Raoult Lemme du mouvement rigide infinitésimal en coordonnées lipschitziennes et application aux coques de régularité minimale, C. R. Acad. Sci. Paris, Ser. I, Volume 336 (2003), pp. 365-370

[4] M. Bernadou; P.G. Ciarlet Sur l'ellipticité du modèle linéaire de coques de W.T. Koiter (R. Glowinski; J.-L. Lions, eds.), Computing Methods in Applied Sciences and Engineering, Lecture Notes in Econom. Math. Systems, 134, Springer-Verlag, Heidelberg, 1976, pp. 89-136

[5] A. Blouza; H. Le Dret Existence and uniqueness for the linear Koiter model for shells with little regularity, Quart. Appl. Math., Volume 57 (1999), pp. 317-337

[6] P.G. Ciarlet Mathematical Elasticity, Vol. III: Theory of Shells, North-Holland, Amsterdam, 2000

[7] P.G. Ciarlet; F. Larsonneur On the recovery of a surface with prescribed first and second fundamental forms, J. Math. Pures Appl., Volume 81 (2002), pp. 167-185

[8] P.G. Ciarlet; C. Mardare On rigid displacements and their relation to the infinitesimal rigid displacement lemma in three-dimensional elasticity, C. R. Acad. Sci. Paris, Ser. I, Volume 336 (2003), pp. 873-878

[9] P.G. Ciarlet, C. Mardare, On rigid and infinitesimal rigid displacements in shell theory, to appear

[10] P.G. Ciarlet; S. Mardare On Korn's inequalities in curvilinear coordinates, Math. Models Methods Appl. Sci., Volume 11 (2001), pp. 1379-1391

[11] G. Friesecke; R.D. James; S. Müller A theorem on geometric rigidity and the derivation of nonlinear plate theory from three dimensional elasticity, Comm. Pure Appl. Math., Volume 55 (2002), pp. 1461-1506

[12] W.T. Koiter On the foundations of the linear theory of thin elastic shells, Proc. Kon. Ned. Akad. Wetensch. Ser. B, Volume 73 (1970), pp. 169-195

[13] Y.G. Reshetnyak Liouville's theory on conformal mappings under minimal regularity assumptions, Siberian Math. J., Volume 8 (1967), pp. 69-85

Cité par Sources :

Commentaires - Politique