[Déplacements rigides et leur relation au lemme du mouvement rigide infinitésimal en théorie des coques]
Soit ω un ouvert connexe de et une immersion de ω dans . On établit que l'ensemble formé par les déplacements rigides de la surface est une sous-variété de dimension 6 et de classe de l'espace . On montre aussi que les déplacements rigides infinitésimaux de la même surface engendrent le plan tangent à l'origine à cette sous-variété.
Let ω be an open connected subset of and let be an immersion from ω into . It is established that the set formed by all rigid displacements of the surface is a submanifold of dimension 6 and of class of the space . It is shown that the infinitesimal rigid displacements of the same surface span the tangent space at the origin to this submanifold.
Accepté le :
Publié le :
Philippe G. Ciarlet 1 ; Cristinel Mardare 2
@article{CRMATH_2003__336_11_959_0, author = {Philippe G. Ciarlet and Cristinel Mardare}, title = {On rigid displacements and their relation to the infinitesimal rigid displacement lemma in shell theory}, journal = {Comptes Rendus. Math\'ematique}, pages = {959--966}, publisher = {Elsevier}, volume = {336}, number = {11}, year = {2003}, doi = {10.1016/S1631-073X(03)00205-X}, language = {en}, }
TY - JOUR AU - Philippe G. Ciarlet AU - Cristinel Mardare TI - On rigid displacements and their relation to the infinitesimal rigid displacement lemma in shell theory JO - Comptes Rendus. Mathématique PY - 2003 SP - 959 EP - 966 VL - 336 IS - 11 PB - Elsevier DO - 10.1016/S1631-073X(03)00205-X LA - en ID - CRMATH_2003__336_11_959_0 ER -
%0 Journal Article %A Philippe G. Ciarlet %A Cristinel Mardare %T On rigid displacements and their relation to the infinitesimal rigid displacement lemma in shell theory %J Comptes Rendus. Mathématique %D 2003 %P 959-966 %V 336 %N 11 %I Elsevier %R 10.1016/S1631-073X(03)00205-X %G en %F CRMATH_2003__336_11_959_0
Philippe G. Ciarlet; Cristinel Mardare. On rigid displacements and their relation to the infinitesimal rigid displacement lemma in shell theory. Comptes Rendus. Mathématique, Volume 336 (2003) no. 11, pp. 959-966. doi : 10.1016/S1631-073X(03)00205-X. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00205-X/
[1] Manifolds, Tensor Analysis, and Applications, Springer-Verlag, New York, 1988
[2] A simple proof of the ellipticity of Koiter's model, Anal. Appl., Volume 1 (2003), pp. 1-16
[3] Lemme du mouvement rigide infinitésimal en coordonnées lipschitziennes et application aux coques de régularité minimale, C. R. Acad. Sci. Paris, Ser. I, Volume 336 (2003), pp. 365-370
[4] Sur l'ellipticité du modèle linéaire de coques de W.T. Koiter (R. Glowinski; J.-L. Lions, eds.), Computing Methods in Applied Sciences and Engineering, Lecture Notes in Econom. Math. Systems, 134, Springer-Verlag, Heidelberg, 1976, pp. 89-136
[5] Existence and uniqueness for the linear Koiter model for shells with little regularity, Quart. Appl. Math., Volume 57 (1999), pp. 317-337
[6] Mathematical Elasticity, Vol. III: Theory of Shells, North-Holland, Amsterdam, 2000
[7] On the recovery of a surface with prescribed first and second fundamental forms, J. Math. Pures Appl., Volume 81 (2002), pp. 167-185
[8] On rigid displacements and their relation to the infinitesimal rigid displacement lemma in three-dimensional elasticity, C. R. Acad. Sci. Paris, Ser. I, Volume 336 (2003), pp. 873-878
[9] P.G. Ciarlet, C. Mardare, On rigid and infinitesimal rigid displacements in shell theory, to appear
[10] On Korn's inequalities in curvilinear coordinates, Math. Models Methods Appl. Sci., Volume 11 (2001), pp. 1379-1391
[11] A theorem on geometric rigidity and the derivation of nonlinear plate theory from three dimensional elasticity, Comm. Pure Appl. Math., Volume 55 (2002), pp. 1461-1506
[12] On the foundations of the linear theory of thin elastic shells, Proc. Kon. Ned. Akad. Wetensch. Ser. B, Volume 73 (1970), pp. 169-195
[13] Liouville's theory on conformal mappings under minimal regularity assumptions, Siberian Math. J., Volume 8 (1967), pp. 69-85
Cité par Sources :
Commentaires - Politique