Comptes Rendus
Mathematical Problems in Mechanics
On rigid displacements and their relation to the infinitesimal rigid displacement lemma in shell theory
Comptes Rendus. Mathématique, Volume 336 (2003) no. 11, pp. 959-966.

Let ω be an open connected subset of 2 and let θ be an immersion from ω into 3 . It is established that the set formed by all rigid displacements of the surface θ(ω) is a submanifold of dimension 6 and of class 𝒞 of the space 𝐇 1 (ω). It is shown that the infinitesimal rigid displacements of the same surface θ(ω) span the tangent space at the origin to this submanifold.

Soit ω un ouvert connexe de 2 et θ une immersion de ω dans 3 . On établit que l'ensemble formé par les déplacements rigides de la surface θ(ω) est une sous-variété de dimension 6 et de classe 𝒞 de l'espace 𝐇 1 (ω). On montre aussi que les déplacements rigides infinitésimaux de la même surface θ(ω) engendrent le plan tangent à l'origine à cette sous-variété.

Received:
Accepted:
Published online:
DOI: 10.1016/S1631-073X(03)00205-X

Philippe G. Ciarlet 1; Cristinel Mardare 2

1 Department of Mathematics, City University of Hong Kong, 83, Tat Chee Avenue, Kowloon, Hong Kong
2 Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie, 4, place Jussieu, 75005 Paris, France
@article{CRMATH_2003__336_11_959_0,
     author = {Philippe G. Ciarlet and Cristinel Mardare},
     title = {On rigid displacements and their relation to the infinitesimal rigid displacement lemma in shell theory},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {959--966},
     publisher = {Elsevier},
     volume = {336},
     number = {11},
     year = {2003},
     doi = {10.1016/S1631-073X(03)00205-X},
     language = {en},
}
TY  - JOUR
AU  - Philippe G. Ciarlet
AU  - Cristinel Mardare
TI  - On rigid displacements and their relation to the infinitesimal rigid displacement lemma in shell theory
JO  - Comptes Rendus. Mathématique
PY  - 2003
SP  - 959
EP  - 966
VL  - 336
IS  - 11
PB  - Elsevier
DO  - 10.1016/S1631-073X(03)00205-X
LA  - en
ID  - CRMATH_2003__336_11_959_0
ER  - 
%0 Journal Article
%A Philippe G. Ciarlet
%A Cristinel Mardare
%T On rigid displacements and their relation to the infinitesimal rigid displacement lemma in shell theory
%J Comptes Rendus. Mathématique
%D 2003
%P 959-966
%V 336
%N 11
%I Elsevier
%R 10.1016/S1631-073X(03)00205-X
%G en
%F CRMATH_2003__336_11_959_0
Philippe G. Ciarlet; Cristinel Mardare. On rigid displacements and their relation to the infinitesimal rigid displacement lemma in shell theory. Comptes Rendus. Mathématique, Volume 336 (2003) no. 11, pp. 959-966. doi : 10.1016/S1631-073X(03)00205-X. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00205-X/

[1] R. Abraham; J.E. Marsden; T. Ratiu Manifolds, Tensor Analysis, and Applications, Springer-Verlag, New York, 1988

[2] J.L. Akian A simple proof of the ellipticity of Koiter's model, Anal. Appl., Volume 1 (2003), pp. 1-16

[3] S. Anicic; H. Le Dret; A. Raoult Lemme du mouvement rigide infinitésimal en coordonnées lipschitziennes et application aux coques de régularité minimale, C. R. Acad. Sci. Paris, Ser. I, Volume 336 (2003), pp. 365-370

[4] M. Bernadou; P.G. Ciarlet Sur l'ellipticité du modèle linéaire de coques de W.T. Koiter (R. Glowinski; J.-L. Lions, eds.), Computing Methods in Applied Sciences and Engineering, Lecture Notes in Econom. Math. Systems, 134, Springer-Verlag, Heidelberg, 1976, pp. 89-136

[5] A. Blouza; H. Le Dret Existence and uniqueness for the linear Koiter model for shells with little regularity, Quart. Appl. Math., Volume 57 (1999), pp. 317-337

[6] P.G. Ciarlet Mathematical Elasticity, Vol. III: Theory of Shells, North-Holland, Amsterdam, 2000

[7] P.G. Ciarlet; F. Larsonneur On the recovery of a surface with prescribed first and second fundamental forms, J. Math. Pures Appl., Volume 81 (2002), pp. 167-185

[8] P.G. Ciarlet; C. Mardare On rigid displacements and their relation to the infinitesimal rigid displacement lemma in three-dimensional elasticity, C. R. Acad. Sci. Paris, Ser. I, Volume 336 (2003), pp. 873-878

[9] P.G. Ciarlet, C. Mardare, On rigid and infinitesimal rigid displacements in shell theory, to appear

[10] P.G. Ciarlet; S. Mardare On Korn's inequalities in curvilinear coordinates, Math. Models Methods Appl. Sci., Volume 11 (2001), pp. 1379-1391

[11] G. Friesecke; R.D. James; S. Müller A theorem on geometric rigidity and the derivation of nonlinear plate theory from three dimensional elasticity, Comm. Pure Appl. Math., Volume 55 (2002), pp. 1461-1506

[12] W.T. Koiter On the foundations of the linear theory of thin elastic shells, Proc. Kon. Ned. Akad. Wetensch. Ser. B, Volume 73 (1970), pp. 169-195

[13] Y.G. Reshetnyak Liouville's theory on conformal mappings under minimal regularity assumptions, Siberian Math. J., Volume 8 (1967), pp. 69-85

Cited by Sources:

Comments - Policy