Comptes Rendus
Partial Differential Equations
Travelling fronts in integrodifferential equations
[Fronts Progressifs dans les équations intégro-différentielles]
Comptes Rendus. Mathématique, Volume 337 (2003) no. 1, pp. 25-30.

On présente plusieurs résultats concernant les solutions de type front progressif dans des équations de réaction–diffusion intégro-différentielles 1D faisant intervenir divers types de non-linéarités (bistable, ignition, monostable). On étend à ces équations des résultats connus dans le cadre d'une équation de réaction–diffusion usuelle : l'existence de telles solutions est notemment démontrée pour les trois types de nonlinéarités citées. L'unicité et quelques formules caractérisant la vitesse de ces fronts sont aussi établies dans certains cas.

We provide results of the existence, uniqueness and asymptotic behavior of travelling-wave solutions for convolution equations involving different kinds of nonlinearities (bistable, ignition and monostable). We recover for these equations most of the known results about the standard equation ut+u+f(u)=0. Some min–max formulas are also given.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(03)00216-4

Jérome Coville 1 ; Louis Dupaigne 1

1 Laboratoire Jacques-Louis Lions, Université Paris VI, 175, rue du Chevaleret, 75013 Paris, France
@article{CRMATH_2003__337_1_25_0,
     author = {J\'erome Coville and Louis Dupaigne},
     title = {Travelling fronts in integrodifferential equations},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {25--30},
     publisher = {Elsevier},
     volume = {337},
     number = {1},
     year = {2003},
     doi = {10.1016/S1631-073X(03)00216-4},
     language = {en},
}
TY  - JOUR
AU  - Jérome Coville
AU  - Louis Dupaigne
TI  - Travelling fronts in integrodifferential equations
JO  - Comptes Rendus. Mathématique
PY  - 2003
SP  - 25
EP  - 30
VL  - 337
IS  - 1
PB  - Elsevier
DO  - 10.1016/S1631-073X(03)00216-4
LA  - en
ID  - CRMATH_2003__337_1_25_0
ER  - 
%0 Journal Article
%A Jérome Coville
%A Louis Dupaigne
%T Travelling fronts in integrodifferential equations
%J Comptes Rendus. Mathématique
%D 2003
%P 25-30
%V 337
%N 1
%I Elsevier
%R 10.1016/S1631-073X(03)00216-4
%G en
%F CRMATH_2003__337_1_25_0
Jérome Coville; Louis Dupaigne. Travelling fronts in integrodifferential equations. Comptes Rendus. Mathématique, Volume 337 (2003) no. 1, pp. 25-30. doi : 10.1016/S1631-073X(03)00216-4. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00216-4/

[1] P.W. Bates; P.C. Fife; X. Ren; X. Wang Travelling waves in a convolution model for phase transition, Arch. Rational Mech. Anal., Volume 138 (1997), pp. 105-136

[2] H. Berestycki; B. Larrouturou; J.M. Roquejoffre Stability of travelling fronts in a model for flame propagation. I. Linear analysis, Arch. Rational Mech. Anal., Volume 117 (1992) no. 2, pp. 97-117

[3] H. Berestycki; B. Nikolaenko; B. Sheurer Travelling wave solutions to combustion models and their singular limits, SIAM J. Math. Anal., Volume 16 (1985) no. 6, pp. 1207-1242

[4] H. Berestycki; L. Nirenberg Travelling fronts in cynlinder, Ann. Inst. H. Poincaré, Volume 9 (1992), pp. 497-572

[5] H. Berestycki; L. Nirenberg On the method of moving planes and the slidding method, Bol. Soc. Brasil. Mat., Volume 22 (1991) no. 1, pp. 1-37

[6] X. Chen Existence, uniqueness and asymptotic stability of travelling fronts in non-local evolution equations, Adv. Differential Equation, Volume 2 (1997), pp. 125-160

[7] J. Coville, Travelling waves in a non-local combustion model, Preprint

[8] J. Coville, L. Dupaigne, Nonlocal population dynamics, Preprint

[9] J. Coville, L. Dupaigne, Front speeds in nonlocal reaction–diffusion equations, Preprint

[10] P. Fife; J.B. McLeod The approach of solutions of nonlinear diffusion equation to travelling front solutions, Arch. Rational Mech. Anal., Volume 65 (1977), pp. 335-361

[11] R.A. Fisher The Genetical Theory of Natural Selection, Oxford University Press, Oxford, 1999

[12] P.E. Souganidis Front Propagation: Theory and Applications, C.I.M.E. Lectures, 1995

  • Jiguang Bao; Shuai Qi Non-local diffusion problems with Neumann type boundary values, Journal of Mathematical Analysis and Applications, Volume 532 (2024) no. 1, p. 19 (Id/No 127926) | DOI:10.1016/j.jmaa.2023.127926 | Zbl:1530.35336
  • Hong-Tao Niu Existence and stability of traveling curved fronts for nonlocal dispersal equations with bistable nonlinearity, ZAMP. Zeitschrift für angewandte Mathematik und Physik, Volume 73 (2022) no. 3, p. 18 (Id/No 90) | DOI:10.1007/s00033-022-01734-8 | Zbl:1486.35118
  • Jong-Shenq Guo; Ying-Chih Lin Traveling wave solution for a lattice dynamical system with convolution type nonlinearity, Discrete Continuous Dynamical Systems - A, Volume 32 (2012) no. 1, p. 101 | DOI:10.3934/dcds.2012.32.101
  • Shi-Liang Wu; San-Yang Liu Traveling waves for delayed non-local diffusion equations with crossing-monostability, Applied Mathematics and Computation, Volume 217 (2010) no. 4, pp. 1435-1444 | DOI:10.1016/j.amc.2009.05.056 | Zbl:1206.45014
  • Shuxia Pan Traveling wave fronts of delayed non-local diffusion systems without quasimonotonicity, Journal of Mathematical Analysis and Applications, Volume 346 (2008) no. 2, pp. 415-424 | DOI:10.1016/j.jmaa.2008.05.057 | Zbl:1149.35301

Cité par 5 documents. Sources : Crossref, zbMATH

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: