[Fronts Progressifs dans les équations intégro-différentielles]
On présente plusieurs résultats concernant les solutions de type front progressif dans des équations de réaction–diffusion intégro-différentielles 1D faisant intervenir divers types de non-linéarités (bistable, ignition, monostable). On étend à ces équations des résultats connus dans le cadre d'une équation de réaction–diffusion usuelle : l'existence de telles solutions est notemment démontrée pour les trois types de nonlinéarités citées. L'unicité et quelques formules caractérisant la vitesse de ces fronts sont aussi établies dans certains cas.
We provide results of the existence, uniqueness and asymptotic behavior of travelling-wave solutions for convolution equations involving different kinds of nonlinearities (bistable, ignition and monostable). We recover for these equations most of the known results about the standard equation
Accepté le :
Publié le :
Jérome Coville 1 ; Louis Dupaigne 1
@article{CRMATH_2003__337_1_25_0, author = {J\'erome Coville and Louis Dupaigne}, title = {Travelling fronts in integrodifferential equations}, journal = {Comptes Rendus. Math\'ematique}, pages = {25--30}, publisher = {Elsevier}, volume = {337}, number = {1}, year = {2003}, doi = {10.1016/S1631-073X(03)00216-4}, language = {en}, }
Jérome Coville; Louis Dupaigne. Travelling fronts in integrodifferential equations. Comptes Rendus. Mathématique, Volume 337 (2003) no. 1, pp. 25-30. doi : 10.1016/S1631-073X(03)00216-4. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00216-4/
[1] Travelling waves in a convolution model for phase transition, Arch. Rational Mech. Anal., Volume 138 (1997), pp. 105-136
[2] Stability of travelling fronts in a model for flame propagation. I. Linear analysis, Arch. Rational Mech. Anal., Volume 117 (1992) no. 2, pp. 97-117
[3] Travelling wave solutions to combustion models and their singular limits, SIAM J. Math. Anal., Volume 16 (1985) no. 6, pp. 1207-1242
[4] Travelling fronts in cynlinder, Ann. Inst. H. Poincaré, Volume 9 (1992), pp. 497-572
[5] On the method of moving planes and the slidding method, Bol. Soc. Brasil. Mat., Volume 22 (1991) no. 1, pp. 1-37
[6] Existence, uniqueness and asymptotic stability of travelling fronts in non-local evolution equations, Adv. Differential Equation, Volume 2 (1997), pp. 125-160
[7] J. Coville, Travelling waves in a non-local combustion model, Preprint
[8] J. Coville, L. Dupaigne, Nonlocal population dynamics, Preprint
[9] J. Coville, L. Dupaigne, Front speeds in nonlocal reaction–diffusion equations, Preprint
[10] The approach of solutions of nonlinear diffusion equation to travelling front solutions, Arch. Rational Mech. Anal., Volume 65 (1977), pp. 335-361
[11] The Genetical Theory of Natural Selection, Oxford University Press, Oxford, 1999
[12] Front Propagation: Theory and Applications, C.I.M.E. Lectures, 1995
- Non-local diffusion problems with Neumann type boundary values, Journal of Mathematical Analysis and Applications, Volume 532 (2024) no. 1, p. 19 (Id/No 127926) | DOI:10.1016/j.jmaa.2023.127926 | Zbl:1530.35336
- Existence and stability of traveling curved fronts for nonlocal dispersal equations with bistable nonlinearity, ZAMP. Zeitschrift für angewandte Mathematik und Physik, Volume 73 (2022) no. 3, p. 18 (Id/No 90) | DOI:10.1007/s00033-022-01734-8 | Zbl:1486.35118
- Traveling wave solution for a lattice dynamical system with convolution type nonlinearity, Discrete Continuous Dynamical Systems - A, Volume 32 (2012) no. 1, p. 101 | DOI:10.3934/dcds.2012.32.101
- Traveling waves for delayed non-local diffusion equations with crossing-monostability, Applied Mathematics and Computation, Volume 217 (2010) no. 4, pp. 1435-1444 | DOI:10.1016/j.amc.2009.05.056 | Zbl:1206.45014
- Traveling wave fronts of delayed non-local diffusion systems without quasimonotonicity, Journal of Mathematical Analysis and Applications, Volume 346 (2008) no. 2, pp. 415-424 | DOI:10.1016/j.jmaa.2008.05.057 | Zbl:1149.35301
Cité par 5 documents. Sources : Crossref, zbMATH
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier