[Estimations capacitaires des solutions d'une classe d'équations elliptiques non linéaires]
Soit un domaine borné régulier de and K un sous-ensemble compact de . Supposons q⩾(N+1)/(N−1) et soit UK la solution maximale de dans qui s'annulle sur . Nous obtenons des majorations et minorations précises de UK au moyen de la capacité de Bessel C2/q,q′ et montrons que UK est σ-modérée. En outre nous corrélons les points d'explosion forte de UK et les points épais de K pour la topologie fine associée à C2/q,q′ et caractérisons ces points par une condition d'intégrale de chemin portant sur UK.
Let be a smooth bounded domain in and K a compact subset of . Assume that q⩾(N+1)/(N−1) and denote by UK the maximal solution of −Δu+uq=0 in which vanishes on . We obtain sharp upper and lower estimates for UK in terms of the Bessel capacity C2/q,q′ and prove that UK is σ-moderate. In addition we relate the strong ‘blow-up’ points of UK on to the ‘thick’ points of K in the fine topology associated with C2/q,q′ and characterize these points by a path integral condition on UK.
Accepté le :
Publié le :
Moshe Marcus 1 ; Laurent Véron 2
@article{CRMATH_2003__336_11_913_0, author = {Moshe Marcus and Laurent V\'eron}, title = {Capacitary estimates of solutions of a class of nonlinear elliptic equations}, journal = {Comptes Rendus. Math\'ematique}, pages = {913--918}, publisher = {Elsevier}, volume = {336}, number = {11}, year = {2003}, doi = {10.1016/S1631-073X(03)00217-6}, language = {en}, }
TY - JOUR AU - Moshe Marcus AU - Laurent Véron TI - Capacitary estimates of solutions of a class of nonlinear elliptic equations JO - Comptes Rendus. Mathématique PY - 2003 SP - 913 EP - 918 VL - 336 IS - 11 PB - Elsevier DO - 10.1016/S1631-073X(03)00217-6 LA - en ID - CRMATH_2003__336_11_913_0 ER -
Moshe Marcus; Laurent Véron. Capacitary estimates of solutions of a class of nonlinear elliptic equations. Comptes Rendus. Mathématique, Volume 336 (2003) no. 11, pp. 913-918. doi : 10.1016/S1631-073X(03)00217-6. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00217-6/
[1] Function Spaces and Potential Theory, Grundlehren Math. Wiss., 314, Springer, 1996
[2] Superdiffusions and removable singularities for quasilinear partial differential equations, Comm. Pure Appl. Math., Volume 49 (1996), pp. 125-176
[3] Solutions of Lu=uα dominated by harmonic functions, J. Analyse Math., Volume 68 (1996), pp. 15-37
[4] D.A. Labutin, Wiener regularity for large solutions of nonlinear equations, Arch. Math., à paraı̂tre
[5] The Brownian snake and solutions of Δu=u2 in a domain, Probab. Theory Related Fields, Volume 102 (1995), pp. 393-432
[6] The boundary trace of positive solutions of semilinear elliptic equations: the subcritical case, Arch. Rational Mech. Anal., Volume 144 (1998), pp. 201-231
[7] The boundary trace of positive solutions of semilinear elliptic equations: the supercritical case, J. Math. Pures Appl., Volume 77 (1998), pp. 481-524
[8] Removable singularities and boundary trace, J. Math. Pures Appl., Volume 80 (2000), pp. 879-900
[9] B. Mselati, Classification et représentation probabiliste des solutions positives de Δu=u2 dans un domaine, Thèse de Doctorat, Université Paris 6, 2002
Cité par Sources :
☆ This research was supported by RTN contract No. HPRN-CT-2002-00274.
Commentaires - Politique