Nous montrons que les solutions positives de Δu=u2 dans un domaine lisse et borné de
We prove that a nonnegative solution of Δu=u2 in a bounded and smooth domain in
Accepté le :
Publié le :
Benoit Mselati 1
@article{CRMATH_2002__335_9_733_0, author = {Benoit Mselati}, title = {Classification et repr\'esentation probabiliste des solutions positives d'une \'equation elliptique semi-lin\'eaire}, journal = {Comptes Rendus. Math\'ematique}, pages = {733--738}, publisher = {Elsevier}, volume = {335}, number = {9}, year = {2002}, doi = {10.1016/S1631-073X(02)02557-8}, language = {fr}, }
TY - JOUR AU - Benoit Mselati TI - Classification et représentation probabiliste des solutions positives d'une équation elliptique semi-linéaire JO - Comptes Rendus. Mathématique PY - 2002 SP - 733 EP - 738 VL - 335 IS - 9 PB - Elsevier DO - 10.1016/S1631-073X(02)02557-8 LA - fr ID - CRMATH_2002__335_9_733_0 ER -
Benoit Mselati. Classification et représentation probabiliste des solutions positives d'une équation elliptique semi-linéaire. Comptes Rendus. Mathématique, Volume 335 (2002) no. 9, pp. 733-738. doi : 10.1016/S1631-073X(02)02557-8. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02557-8/
[1] Stochastic boundary values and boundary singularities for solutions of the equation Lu=uα, J. Funct. Anal., Volume 153 (1998), pp. 147-186
[2] Diffusions, Superdiffusions and Partial Differential Equations, Amer. Math. Soc. Colloq. Publ., 50, 2002
[3] Superdiffusions and removable singularities for quasilinear partial differential equations, Comm. Pure Appl. Math., Volume 49 (1996), pp. 125-176
[4] Solutions of Lu=uα dominated by L-harmonic functions, J. Anal. Math., Volume 68 (1996), pp. 15-37
[5] Trace on the boundary for solutions of nonlinear differential equations, Trans. Amer. Math. Soc., Volume 350 (1998), pp. 4499-4519
[6] Fine topology and fine trace on the boundary associated with a class of quasilinear differential equations, Comm. Pure Appl. Math., Volume 51 (1998), pp. 897-936
[7] Les solutions positives de Δu=u2 dans le disque unité, C. R. Acad. Sci. Paris, Série I, Volume 317 (1993), pp. 873-878
[8] The Brownian snake and solutions of Δu=u2 in a domain, Probab. Theory Related Fields, Volume 102 (1995), pp. 393-432
[9] A probabilistic Poisson representation for positive solutions of Δu=u2 in a planar domain, Comm. Pure Appl. Math., Volume 50 (1997), pp. 69-103
[10] Spatial Branching Processes, Random Snakes and Partial Differential Equations, Lectures in Math. ETH Zürich, Birkhäuser, 1999
[11] Trace au bord des solutions positives d'équations elliptiques et paraboliques non linéaires. Résultats déxistence et d'unicité, C. R. Acad. Sci. Paris, Série I, Volume 323 (1996), pp. 603-608
[12] The boundary trace of positive solutions of semilinear elliptic equations, I: the subcritical case, Arch. Rational Mech. Anal., Volume 144 (1998), pp. 201-231
[13] The boundary trace of positive solutions of semilinear elliptic equations, II: the supercritical case, J. Math. Pures Appl. (9), Volume 77 (1998) no. 5, pp. 481-524
[14] B. Mselati, Classification et représentation probabiliste des solutions positives de Δu=u2 dans un domaine, Thèse de doctorat de l'Université Paris VI, 2002
Cité par Sources :
Commentaires - Politique